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PREFACE

Chaos and nonlinear dynamics can be expected to play an increasingly important role in
atmospheric research and applications to Army problems. This report is intended to give a
survey of the whole field of nonlinear dynamics (or “chaos theory,” as it is popularly called)
in a compressed form. It is slightly expanded from a series of lectures given over the space
of a single month in 1989. This young and rapidiy growing field is already very extensive,
so that this survey cannot be deep or detailed. In particular, no pretense of mathematical
rigor is made. But I do insist on stating key definitions or theorems carefully so that
the reader need not settle for just a qualitative, intuitive understanding. My intention is
to touch on the main ideas so that the reader can see if his or her special discipline fits
in anywhere and if so, can get an approximate notion of what new ideas or possibilities

nonlinear dynamics brings to that field. The cited literature then allows the reader to
proceed further if he or she desires.

I thank Harry Auvermann for suggesting that I give these lectures in wne first place, for
inviting me then to write them up in the present more coherent form, and for taking care
of all the official, administrative, and practical details. My especial thanks go to David
Bandelier who worked with me to turn my manuscript and rough sketches into print. It
is a great comfort to see one’s handwritten manuscript come back promptly, transformed
into practically flawless typescript on the first draft.
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1. INTRODUCTORY REMARKS

1.1 Linear Versus Nonlinear

A dynamics describes the time evolution of a.system. As such, the concept is not
confined to physics, but occurs in many other fields as well — in related sciences like
engineering, chemistry, and biology, but also in ecology, economics, etc. A nonlinear
dynamics -describes the time-evolution via nonlinear equations of motion, which may be:
ordinary differential equations, partial differential equations, difference equations, iteration
of maps, etc. Nonlinear motion equations have been around a long time — since the
beginning of science, in fact — so why the sudden blooming of nonlinear dynamics as a new
discipline in the last 20 years or so?

The answer is that up to that time nonlinear equations were regarded as not
essentially different from linear ones — more complicated and difficult to solve, of course,
but nothing that suitably refined linear approximations couldn’t handle.  Analytic
(“closed form”) solutions were emphasized in textbooks with the confident expectation
that “nonanalytic” solutions, if they existed, formed a small subset of all solutions which
didn’t greatly add to the understanding of the phenomena. But about 20 years ago it
was realized that nonlinear equations are essentially different from linear ones, that they
possess properties which can never be captured by linear approximations, that analytic
solutions are the exception, not the rule, and that solutions sets may show “deterministic
chaos.”

Linear equations enjoy by definition the property of superposition. That is, linear
combinations of solutions are also solutions: the solutions form a linear, or vector, space.
Linear theories are highly structured theories, and one has many helpful theorems at hand.
For example, a general solution exists, solutions have only “fixed” singularities, that is,
those occurring in the linear equations themselves. But do not get the idea that linear
theorics are considered passé or discredited, now that we are elucidating the mysteries
of nonlinear dynamics. Some of the most beautiful and accurate theories in physics are
linear. Witness the Maxwell theory of electromagnetism, or quantum mechanics itsclf,
the fundamental theory of the subatomic world. Indeed, today no failure of quantum
mechanics is known.

Nonlinear equations are all the rest: all those which are not linear. Most of
the convenient properties of a linear dynamiés mentioned above are lost: there is no
superposition and no general solution; analytic solutions are rare or nonexistent; solutions
may have singularities not present in the motion equations, and these may depend on
the initial conditions, etc. However, interesting new properties show up in compensation.
Asymptotic (time — oo) solutions are often independent of initial conditions and lie on
low-dimensional “attractors” in phase space. There is a complicated set of these stable
regimes joined by bifurcations of various types. There may exist “chaotic” regimes.

Incidentally, the reader should not worry if some of the statements in these prelimi-
nary remarks of chapter 1 seem a bit vague or elusive by reason of undefined terms. For
now, it is enough that they carry some sort of intuitive meaning. All important terms and
concepts will be defined carefully at the proper places in this report.
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1.2 The Goals of Nonlinear Dynamics

The dynamics that will be our main focus of attention in this report will be specified
by one or several first order ordinary differential equations in time,

_dr

i = f(z,t) ; == 1-1)
or by a map z —— F(z) which is iterated:
z, F(z), F[F(JJ)], F[F[F(m)]], T (1-2)

The set of continuous time solutions, or orbits of (1-1) is called a flow, while the set
of discrete-time orbits (1-2) is sometimes called a cascade. Both f and F depend on
parameters which can be varied.

What information do we seek in nonlinear dynamics?

a. The geometry, or more often, topology of the flow (or cascade) as a whole: phase
portraits, stable and unstable manifolds, various low-dimensional invariant attracting sets
if they exist.

b. Bifurcation points, that is, those parameter values at which the flow “changes
qualitatively.”

¢. The characteristics of “chaotic” flows, and the various paths to chaos which the
dynamics admits,

What mathematical tools are available for this search? There exist theorems, far fewer
than in linear dynamics, which limit the possibilities in nonlinear dynamics. Numerical
computation (sometimes called “experimental mathematics”) plays a big role in discovering

the information listed above and in suggesting and motivating, if not proving, theorems
about a particular dynamics.

1.3 “Chaos”

The quotation marks here signal that a consensus has not yet been reached on the precise
definition of this term. This accounts for the many apparent contradictions and fruitless
controversies in this subject. Following current custom, we shall mean by “chaos” any or
all of the following properties: sensitive dependence on initial conditions, broadband power
spectra, decaying correlations, or randomness or unpredictability of orbits as measured by

positive algorithmic complexity or entropies of the various kinds. These properties are not
all independent.

Of these, sensitive dependence (on initial conditions understood), abbreviated in this
report as SD, is by far the most important ingredient of “chaos.” In fact, in its strong,
or exponential, form SD is accepted by most as the definition of chaos. The intuitive
meaning of SD is the unpredictability - or uncomputability - in principle of some orbits.
That is, inevitable errors in initial conditions, no matter how small, may get magnified on
computation, so that the computed orbit (or some observable function of the orbit) bears

12




no resemblance to the actual orbit (or function thercof). This bas nothing {o do with nois-
or perturbations from outside the system. Seasitive dependence is an intrinsic properiy
of the dynamics iz some parameter regimes; it is true “deterministic chaos.™ Obviously,
this bears on the ancient philosophical dichotomy between determinism and chance (and
seems at first sight to contradict ii!).

In a system which displays “chaos,” there may be several sequences of regimes leading to
“chaotic” behavior, several “paths to chaos,” so o say. The uriversality of these varicus
paths in systems superficially very different (for example, iterating one-dimensjonal maps
and viscous, incompressible fluid flow) is a surprising theoretical and experimental result.

To give the reader a preliminary feeling for sensitive dependence, this perhaps most
important concept of nonlinear dvnamics, we shall illustrate it on the simple dynamics
of a 1D (one-dimensional) map. The other attributes of “chaos® mentioned above will
be covered later in the main text. Consider the particular 1D map F(z) = pz(1 — x)
with 0 <z <1 and 0 < g < 4, that is, the iteration scheme z,41 = pz,(1 —2,). n=
0,1,2,3,---, defining the orbit (1-2). Choose the parameter value 2 = 4 and substitute
T, = sin’wf,, 0 <6, <1. Then the iieration scheme takes tie form sin? #0pp1 =
4sin® 8, cos? 76, that is,

Ons1 = 260,(modl) (1-3)
where (modl) means that any integral part of 26,, is chopped off so that the result lies in
the interval (0,1). We can actually get an “analytic” solution (1) for this parameter value,
namely

0, = 2"0y(modl),
where §p € (0,1) is the initial value. Now shift the initial point slightly: 65 = 65 + € ; then

8, — 0, = 2% = ee” 12

(as long as 2"¢ < 1), that is, exponential separation of the two initially very close orbits
with Lyapunov ezponent In2. Obviously, the “error” in the orbit will get big for n large
enough, no matter how small e. This is SD (in particular, exponential SD).

To be more quantitative about the SD, write the initial value 6, in binary notation. For
example,

fo=1/2+1/4+1/16+1/128 +--- = 0.1101001 - - -. (1-4)

Then iteration algorithm (1-3) amounts to shifting the “decimal point™ to the right by one
and dropping the digit to the left of this point. For the value (1-4),

(90 =.1101001--- N 91 =.101001--- N 02 =.01001--- ’ 93 =.1001--- , etc.

We sce that 0, depends on the (n + 1)st and nigher digiis of 6y, so when n is large, the
value of 0, depends exziremely sensitively on the precise value of 8. For instance, let 6y and
6y differ first in the (n + 1)st place, where 6y has a 0 and 6} has a 1. Then 6} — 6y = 2-"
at most (<<< 1 for large n). But 6, = .0--- and 6" = .1---, so that they could differ
by as much as 1, or the whole domain (0,1) of the logistic map for 0 < £ < 4. On a
digital computer with capacity 2V bits, the computed orbit for a given 8 has in general
no rescmblance to the real orbits for times n > N.

Ex. 1.1 Take 6 = 1/7. Then we know that the exact orbit is
/7, 2/7, 4/1, 1/7, 2/1, 47, 1/i---, (1-5)

that is, a periodic orbit of period 3. Now perform the iteration ( 1-3) on a pocket calculator
or computer and compare with (1-5) for large n.

13




2. FUNDAMENTALS OF CONTINUOUS TIME SYSTEMS
2.1 Flows

A system of N first order ordinary differential equations in fime £,

= f(z,t), z= %, zeRY, (2-1)
defines a flow. Here we have taken the flow io be in R = the sct of all rcal N-tupies
(z1,22,---zx), which is the usual case; the function f;, which thus has N components
(f1.f2.--- fx), maps RV into R¥, in symbols f : B — RY. U f(z,1) = f(z)
does not explicitly depend on t, the flow is called autonomous RN, or the subset
of ¥ in which the flow is confined, is czlled the phase space of the flow. A so-
lution z(f) = (z1(£),z2(),--- zx(f)) of ihe flow (2-1) with initial value zo = z(0) =
(z1(0),22(0), - - - n(0)) is called the orbif. A graph of all orbits or some subset of them in
phase space is called a phase porirait, and is useful to visualize the flow as a whole in the
neighborhood of some interesting point or other structure.

Orbiis of an autonomous flow do not intersect! Every point in phase space lies on one and
only one orbit. This comes from a beautiful theorem on the uniqueness of orbits, see, say,
GH (1983, Th. 1.0.1) which states precisely:

Let f be C* in ®V. For any open set U C RV, 3 a time interval
(—c, ) such that the orbit ¢,(zo) exists and is unique for every z¢ € U. (2-2)

For technical mathematical symbols and terms here and hereafter, consult the mathemat-
ical Glossary at the end of the Guckenheimer and Holmes reference above. We shall use
the symbol 3, “there exists,” quite often. We shall usually assume the hypotheses of this
theorem fulfilled for our flows, so that orbits like those shown in Fig. 2.1 are excluded.

o —=%

Fig. 2.1 Excluded orbits
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‘The reader might think that restricting our dynamics to autonomous flows (as we shall
do) is much too narrow. It seems to rule out higher order motion equations, for example,
second order equations such as Newton’s laws deliver, all cases with forcing terms, and
so on. But this is not so. By enlarging our phase space we can include those cases too.
An example will make this clear. Consider the nonautonomous, second order dynamics
defined by Z + r = acoswt, a harmonically driven linear harmonic oscillator with position
coordinate x. Set z; =z, 2z, =2z, =z3=wi. Then weget

i‘l = T2, 1-22 = —z3 +acoszs, i;; =W

But this is just an autonomous flow in 3! In particular, even without the forcing term
(a = 0), the phase space is 2, not R! = R; phase space is the space of position and
velocities (or momenta), so it has dimension 2m for a configuration space of dimension m.
Hence without loss of generality we shall assume all flows autonomous hereatfter.

2.2 Linear Stability Analysis
2.2.1 Case of Linear Flows

Consider the linear autonomous flow £ = Az, where 4 is a real N x N matrix. We

treat the case which usually occurs in applications: A can be diagonalized by a similarity
transformation

TIAT =A , (2-3)

where A is diagonal with the eigenvalues Aj, A2,--- Ay of A on the diagonal. Thus the
corresponding eigenvectors eg, €2, - - en,

Aej=Xie; , 1=1,2,---N, (2-4)

are lincarly independent (span  RV), and the columns of T arc the components of these
eigenvectors. (We prefer to regard A as a linear operator and the e; as vectors, basis-
independent concepts; nevertheless, entirely equivalently one can interpret A asan N x N
matrix, the ¢; as N X 1, or column, matrices, and Ae; as matrix multiplication.) The
secular equation

[A = A1l =det(A- A1) =0, (2-5)
where 1 = unit matrix, determines the eigenvalues );.

The completely general case, when the eigenvectors of A may not span ®V, so that A is not
diagonalizable, is treated in appendix A. A can still be put into a simple, standard form
(Jordan canonical form) by a similarity transformation, and the resulting linear stability
analysis is not essentially different from the diagonalizable case.

We now define some important subspaces of phase space. Divide the cigenvectors into
three subsets,

{u1,u2,---un,} such that Rel;>0
{v1,v2,---vn,} such that Relj<0 (2-0)

{w1,w2,---wn,} such that Rel;=0 ,
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with Ny + N, 4+ N. = N. Then dcfine
Unstable subspace E* = span{u;,uq,---uy,},

Stable subspace E* = span{uv;,vs,---vn,}, 2-7
Center subspace E°:= span{w;,wz,---wpn_}.

The reason for the nomenclature is this: we assert that every o.bit based at 9 € E?® decays
exponentially in ¢; every orbit based at z9 € E* blows up exponentially in #; and every
orbit based at ¢ € E€ is constant in ¢, as ¢ —» +00. We also claim that each subspace is
invariant (carried into itself) under the flow. Both of these assertions are easily seen by
noting that the solution of £ = Az is z(t) = exp(tA)zy. Taking 29 = Ef" ¢j - €5 in the
stable subspace E°, for example, we see that the orbit is

exp(tA)ze = exp(t4) Z cjej = Z cjexp(td)e; = ZCjeu" e;€E° (2-98)
Q.E.D. Moreover, since Redj < 0, the length ||z(t)|| — 0. Similarly for zo € E*,

lz(t)[| — +o0; for zo € E*, [|z(?)]] = |lzo]| = const.

A word on the general case: the three subspaces are defined by (2-6) and (2-7), where
the vectors are now generalized eigenvectors to the eigenvalues determined by (2-5). One
can show that these subspaces are invariant and that every orbit based in E*, E*, or E¢
decays exponentially, blows up exponentially, or varies algebraically in ¢ as ¢ — +o00. The
only difference is that powers of ¢ times an exponential in ¢ are in general allowed.

Note that the point * = 0 (the zero vector) is a fized point: i* = 0 for the lincar flow,
in fact the only fixed point. The phase portrait of the flow near the fixed point can be
constructed, and the subspaces E*, E*, and E°® indicated on the same graph.

Ex. 2.1 Take A= (J_1). The phase space is ®? = the plane.
a. Find the eigenvalues and eigenvectors. Is A diagonalizable?
b. Find E*, E*, and E°,

c. Draw the phase portrait around z* = 0 = (0,0), and indicate the three
subspaces.

Ex. 2.2 Same question for

-1 -1 0
A=}|1 -1 0], phase space is R°.
0 0 2

As to part c. of Ex. 2.2, here there is a pair of complex conjugate eigenvalues and
cigenvectors: Ay, eq and A_ = A}, e~ = e}, where * is complex conjugate. Form two
real vectors g, ez from complex combinations of e4. and e_; then ey, ez span the same real

two-dimensional subspace of £° as ey and e... Express the real orbits in terms of e; and
e2. You will find spiralling motion.
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2.2.2 Case of Nonlinear Flows

The lincar stability analysis of the flow = f(z), in general nonlinear, now follows casily
from that of linear flows. Consider a fized point z* of the flow, defined by #* = f(=*) = 0.
We linearize the flow about z*. Set £ = z* + u, where [Ju]| is small in some sense, and
Lkeep only terms of O(w) in the calculation. Substitute = = =* + u into the flow equations,
expand f(z* 4+ u) in a power series in u about z*, and keep only the first two terms. For
the O(u) part we get

@=Df(z*)u , (2-9)

where D f(z*) is the Jacobian matriz evaluated at the fixed point,

of; . .
Dfe =25, ij=12--N (2—10)
Oz;
z=z*

But (2-9) is just alinear flov »ith A = Df(z*). So we find the eigenvalues and eigenvectors,
invariant subspaces E*, E*, E°, etc.; that is, we perform the linear stability analysis for
this fixed point just as in section 2.2.1. We expect the local nonlinear flow around z* to
be indistinguishable from the linear flow governed by A = Df(z*). This is true with an
important proviso to be made below.

We work out an illustrative example: consider the van der Pol oscillator £+b(z2—1)i+z =

0, 5> 0. As an autonomous flow in 2 it reads £; = 25, &3 = —21—b(z? —1)z2, s0 fi = 2o,
f2 = —z1 — b(z? — 1)z5. The only fixed point is 2* = (0,0). The partial derivatives of f
are

Of ofi ofs _ fo _ 2

3.’171 - 31122 - 1, 3:121 =1 belmz’ Bxg - b(ml 1)’

so the Jacobian matrix is

Df(m*=0)=(_01 11)) 2—11)

The eigenvalues of this are Ay = b/2+ (b2/4 —1)%, and the corresponding eigenvectors e
are found to span R2. Now Relyx > 0, so

E* = span{es,e_} =R?, E°*=E°=0. (2-12)

4

All orbits are repelled exponentially from the fixed point 0.

2.3 Stability Types of Fixed Points

We now have to elucidate the key notion of stability (for a fixed point here, but for more
general structures later), and to see what linear stability analysis has to say about it. For

the fixed point 2* of a general autonomous flow, which we assume is confined to the open
set 7 C RV, we have the definitions (GH, p.3):

The fixed point z* is stable if for every neighborhood V c U
of z* there is a neighborhood V; C V of z* such that every
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solution z(t) = ¢;(xo) ith zo € V; is defined and € ¥V for
allt > 0. (2-13a)

The fixed point =* is asymptotically stable if it is stable and for
every neighborhood V' C U of z* a neighborhood V; C V of z*
exists such that ¢:(zo) — z*, t — +o0, for every zop € V3. (2-13b)

The fixed point z* is unstable if it is not stable. (2-13¢)

Sce Fig. 2.2.

Fig. 2.2 Stability types illustrated: on the left, a center (stable but not asymptotically
stable); on the right, a sink (asymptotically stable) '

The fixed point has special names in the first two cases: z* is a center if it is stable but
not asymptotically stable; it is a sink if it is asymptotically stable. It is useful to spell out
the definition of unstable in positive terms by negating the definition of stable. Namely:

The fixed point z* is unstable if 3 a neighborhood V C U of z*

such that for all neighborhoods ¥; C V of z* 3 an orbit based at

w9 € V1 which € V for some ¢ > 0. (2-14)

Loosely transcribed, these careful definitions can be phrased as follows. A fixed point x*
is stable if for every neighborhood V' of 2*, we can keep all orbits in V forever if we start
them close enough to z*. It is asymptotically stable if it is stable and if all orbits converge
to &* if we start them close enough to z*. It is unstable if we can find a ncighborhood V

18




of it such that from any neighborhood V; of z* contained in ¥, no matter how small, at
least one orbit started in V; escapes from V at some time.

To convince yourself of the necessity of the details which scem to make the careful

definitions (2-13) unnecessarily pedantic and complicated, try answering the questions
in Ex. 2.3.

Ex. 2.3 Do the following statements say anything about the stability type of 2*?

a. For every neighborhood V' of z* an orbit based in V converging to z* is
observed.

b. For every neighborhood V of z* an orbit based in V' which escapes V is
observed.

¢. We can find a neighborhood V of z* such that for every neighborhood V; C V
of z*, every orbit based in V; staysin V for all £ > 0.

2.4 Connection of Stability and Linear Stability Analysis

The general idea is that the local behavior of the linearized flow around z* carries over to
the nonlinear flow, thus selecting one of its stability types. To make this precise, let us
call z* hyperbolic (sometimes nondegenerate) if D f(z*) has no eigenvalue A with Re) = 0.
That is, if E¢ = 0. If then BE* = 0, z* is called a source; if both E® and E* # 0, z* is
called a saddle point. See Fig. 2.3.

VAN

w

sink source saddle point

Fig. 2.3. Left to right: a sink, a source, a saddle point
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Then there exists a homeomorphism h in some neighborhood V' of z*-taking the orbits
d1(zo) of the nonlinear flow into the orbits exp(tDf(z*))uo of the linearized flow and
preserving the sense of the orbits (GH, Th 1.3.1).

Def. A homeon'zorphi.s-m h: U — V maps open set U into open
set V such that h is continuous and 2! exists and is continuous. (2-15)

See Fig. 24.

Homecomiorphism is the basic concept of topology. A topological property is one invariant
under all homeomorphisms (thus under stretching; compressing, twisting, etc., but not
tearing). The importance of homeomorphisms and topology in nonliriear dynamics is that
stability is a topological notion!

Thus in the hyperbolic case the linearization determines the asymptotic time behavior of
the nonlinear flow and hence z*’s stability type. We have

z* is asymptotically stable iff only E* # 0 (z* a sink).
z* is unstable iff E* 5 0 (z* is a source or a saddle point).
(Hyperbolic case) (2-16)

HE = “if and only if.” The center case is absent. These are the only two possibilities. If
Re) = 0 for any eigenvalue of the Jacobian matrix (E€ # 0), the stability of * cannotin
gencral be determined by the linearization.

F,S’

219
s

174 A=y

Eu

AN

Fig. 2.4 Homeomorphism from the nonlinear to the linearized flow around a fixed point.
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2.5 Topological Equivalence of Flows

The above section motivates the introduction of another topological notion which will be
useful when we come to discuss bifurcations. First we give the rigorous definition, then
try to give the reader an intuitive feeling for it by some remarks. Consider two flows in
RN, & = f(2), z € X, and y = ¢g(y),y €Y, with orbit functions ¢f and ¢!, respectivaly.

Def. The f-flow and the g-flow are topologically equivalent iff
there exists a homeomorphism k : X — Y such that for every ¢4,
ho¢f = ¢%, o h for some t,. (2-17)

Here o is functional composition, namely f o g(z) = f(g(z)). If the homeomorphism is
realized by the function y = h(z), this means

Wl () = ¢4, (h(z)), all s EX. (2-18)

That is, there exists a 1-1 bicontinuous map which takes every point & on an orbit of the
f-flow at time ¢; into a point y = h(z) of the orbit of the g-flow at a time t,. See Fig. 2.5.

More briefly, h maps every orbit of the f-flow into an orbit of the g-flow in a continuous
manner, and vice-versa. Stated yet another way, the f-flow can be continuously deformed
into the g-flow, and vice-versa. Thus the two flows are really the same up to a “change of
coordinates,” as (2-17) validates. In this language the theorem in section 2.4 says that the

nonlinear flow is topologically equivalent to the linearized flow around a hyperbolic fixed
point.

Fig. 2.5 Mapping of topologically equivalent flows
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2.6 Stable and Unstable Manifolds of a Fixed Point

These are generalizations of the stable and unstable subspaces of the linearized flow to the
full nonlinear flow. We shall give loosely stated definitions sufficient for our puirposes.

The (global) stable manifold W* of a hyperbolic fixed point a* is the set of all those
points which converge to x* under the flow. That is, all « € phase space such that
$y(z) — z*, t — +oo. Similarly, the (global) unstable manifold W* of 2* is the sct of
all those points which “diverge from z* under the flow” or, more precisely, all those points
which converge to z* as time runs backwards: ¢.(z) — z*, t— —oco. Both W* and W*
are invariant sets, where the general definition is: set S is invariant if ¢,(S) C S, —o0<
¢ < co. See Fig. 2.6, which illustrates W* and W¥, both 1D (one-dimensional) for a 2D
flow, and also their relations to E* and E*.

Then we have the Stable Manifold Theorem (GH, Th 1.3.2), which states that W* and
W* have the same dimensions as E* and E*, respectively, and are tangent to them at the
hyperbolic fixed point z*. Figure 2.6 illustrates this.

We detail some properties of W* and W*in the followirig. Since an orbit is an invariant
set and orbits do not intersect, we see that W* and W* are composed of entire orbits.
Clearly, given two (hyperbolic understood) fixed points z*, y*, W*(z*) and W *(y*) cannot
intersect, by definition. The same goes for W*(2*) and W*(y*).

But W* and W* of two different fixed points or of the same fixed point may intersect
without contradiction. These intersections must of course be composed of whole orbits
common to both W* and W*. Figure 2.7 illustrates some of these properties.

2.7 Bifurcations

In section 1.2, we described a bifurcation as a “qualitative change in the flow.” But what
does this mean precisely? If the orbits are all straight lines and, by changing a parameter,
suddenly become wavy lines, is this a bifurcation? Fortunately, we now have the topological
tools at hand to pin this notion down precisely. But first we motivate the general definition
by treating local bifurcations near fixed points.

2.7.1 Local Bifurcations Near Fixed Points

Consider a 1D real flow & = f,(z), # € R, where p is a parameter. Let 2* be a fixed point,

and consider the linearized motion (2-9). The Jacobian matrix in this case is the ordinary
derivative:

ey =B oy (2-19)

the eigenvalue itself. Thus in the case A # 0 (note A is real) we have the hyperbolic case,
and the stability type of #* is completely determined by the principle (2-16). Namely, z*
is asymptotically stable if A < 0 and unstable if A > 0.
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Fig. 2.6 Relation of W* and E* and of W*, E* of a fixed point.

e this is out!
»*
1

WD =¥ ")

X

homoclinic orbit

%
w U(X;) = W* (XE) A saddle point:
five different
. o non-intersecting orbits
X

heteroclinic orbit

Fig. 2.7 Top: forbidden transverse intersection of stable manifolds. Bottom: allowed
cases of stable and unstable manifolds.

a. 1D laser equation

& = qz — ka?, k>0 fixed, o Z 0 variable (2 -20)

ALV
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x has the interpretation of the number of laser photons, or intensity, so phase space is
0 << oo The fixed points are z} =0, 3 = afk. A= a—2rx*, 50 A =@, Ag = —qv.
Thus for a < 0, 2} is asymptotically stable, 3 is unstable. For a > 0, z} is unstable,
% is asymptotically stable. The value o = 0 is the bifurcation value of the parameter,
separating these two different stability regimes. This is displayed in a bifurcation diagram,
which plots the fixed points against the parameter and indicates their stability. See Fig.
2.8.

»
stable ¥ «
unstable — — — — & x5 4
< x‘i= 8
AT —
«—>
4
Fig. 2.8 Bifurcation diagram for the 1D laser
b. Pitchfork bifurcation
. 3 > .
t=pzx—-2°, p 2 0 variable (2-21)
<

Here —oo < # < 0o. The fixed points are 2} =0, 23 =+ /i. A=p~ 3(z*)?, s0 Ay =,
A+ = —2u. Hence for u < 0, z} is asymptotically stable and the fixed points z7 don’t
exist (since phase space is real). For u > 0, z} is unstable, 23 are asymptotically stable.

We see that u = 0 is the bifurcation value, and the bifurcation diagram has the form in
Fig. 2.9.

The linearized motion in the 1D case is u = e*ug, so the phase portraits arc as shown in
Fig. 2.10 in the different stability regimes.
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x*
stable —— xX*=+
unstable - — — — _(_ 7
—
o 4
0 p—>
!
& X2 = gy
Fig. 2.9 Pitchfork bifurcation diagram
)\* X*é = x/l(
N >
r R —_So N T o
0 N~ Nx—> o 7~ 7 , N N x—>
x< 9 « >
X= «x - kx2
* =— xt:-&
I T
S SNEIPL I !
0 Xx—> ' ° x—>
p<8 X = px - x3 p>9
Fig. 2.10 Phase portraits for the 1D flow (2-21)
c. The Brusselator (a model chemical reaction)
X=A-(B+1)X+X%, Y=DBX-X?, (2 -29)

where the phase space point z = (X,Y), X,Y > 0, is in the first quadrant of the plane.
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The sole fixed point is z* = (X*,Y*) = (4,BA™).

,., B-1 A?
Df("")=(_B —A”)’

hence the eigenvalues are Ay = —A/2 £ 4/A?/4 — A%, where A = A% 4+ 1~ B. We take
A as the variable parameter and hold A # 0 fixed. We see that for A > 0, ReAx < 0; for
A < 0, ReAs > 0. Hence we have the hyperbolic case; and z* is asymptotically stable for
A >0 (B < A% +1), z* is unstable for A < 0 (B > A% +1). A = 0 is the bifurcation
value. We have a new situation here. For B < A? + 1 we have a single sink (or attractive
fized point). For B > A% + 1 this becomes unstable, a source (or repelling fived point),
What happens to the flow then, since there are no further fixed points to converge to? The
answer is that the flow converges again, but to a one-dimensional set, a limnit cycle, that
is, a periodic crbit. Sce the phase portraits in Fig. 2.11.

e = fixed point

y v Y
3

B<Z.0>a B=3,0<8

Fig. 2.11 Phase portraits for the Brusselator (A=1)

Motivated by these examples, we generalize to the definition: a local bifurcation at the fixed
point z* of the flow f,(2) occurs when an eigenvalue X of Df,(z*) crosses the imaginary
axis in the complex eigenvalue plane. Let it cross at the bifurcation wvalue jiy, of the
parameter. Then Re)(u) = 0, and this zero is isolated.

2.7.2 Bifurcation, General Definition

Look at the phasc portraits in Figs. 2.10 and 2.11. The flows are really “qualitatively
different” before and after the bifurcation. What we mean is that there is no way we can
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coniinuousiv deform one fiow into the other. ‘This is the key idea, bringing in the notion
(2-17) of topological equivalence.

Def. The parameter value p3 of the flow £ = f.(z) is called 2

bifurcation value if the flow is not structurally stable at ji = piy.

‘This means that there exist arvitrarily small periusbations & f(z),

8 f(z) of fy,(z) such that the perturbed flow = = f,,,(r) + & f(z) is

not topologically equivalent to the perturbed flow & = f,,(z) + & f(z). (2—23)

This is still not completely unambiguous, since the nature of these perturbaiions must
be spelled out (see GH, definitions 1.7.1 and 1.7.4), but will suffice for us. Clearly this
is what happened in the local bifurcations of section 2.7.1. The small perturbations é, f
and 8, f were generated by changing the parameter g itsclf to values slightly above and
slightly below the bifurcation value g Later we shall meet global bifurcations, whose
modification of the flow is not confined to the ncighborhood of any point in phase space,
that is, “extends to infinity.”

The notion of structural stability of a flow is a very useful one in nonlinear dvnamics. For
example, if we know that a flow is structurally stable at a value j1, we can change y slightly

and be sure that the phase portrait is roughly the same, has not suffered any catastrophic,
qualitative changes.

Ex. 2.4 Find fixed points, their stability, and bifurcation values (if any) for the

following real 1D flows. Draw the bifurcation diagrams. The real parameter g can be
positive, negative, or zero.

a) fu(z) = p— =2
b) fu(z) = pz — 2
c) fu(z) = p?z - 2°
d) fu(z) = pPz +2°

2.8 Dissipative Flows and Attractors

Consider an autonomous flow £ = f(z) in ®V. The system is called dissipative in U C RV

N
ifV.-f= Z;, gﬁ% < 0 there. For f(z) is the velocity field of the flow in phase space, so that
negative divergence implies that comoving volume elements arc shrinking in time. Hence
a nonzero volume of RV asymptotically shrinks to volume 0 under the flow. This fact,
that flows which initially occupy high-dimensional manifolds eventually end up on very
low-dimensional manifolds for dissipative flows, is one of the characteristic and simplifying

properties of these nonlinear flows. Such final sets are called attracting sets or attractors.
We can make this precise by

Def. A closed and invariant set A is called an attracting set

if 3 a neighborhood V of A such that ¢y(z) € V for £ > 0
and ¢¢(x) = A, t — +ooforall z € V. (2-24)
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One can strengihen the definition by requiring some extra properties such as indecompos-
ability (A contains a dense orbit), generalized dimension in some range, “chaotic” flow,
eic., and call such sets attractors or strange atiractors. We shall not try to be too precise
here because there is not yet universal agreement on these definitions in the literature.

Examples of aitractors arc attractive fixed points and lmit cycles.  Remember the
definition of the former in (2-13b). The notion of the convergence of an orbit to a set
A such as 2 limit cycle, which occurs in the definition (2-24), is no more complicated than
the usual “¢, §” definition of convergence to a point; one must only use the distance of the
orbit point @,(z) from the (closed) set A rather than the more familiar distance from a
pomt z*.

Such attractors have “volumes” (that is, Lebesgue measure) in R = 0, and thus ordinary
dimension an integer < N—1, when they are not too pathological to be assigned an ordinary
dimension. For example, an attracting fixed point has dimension 0; an attracting limit
cycle, dimensicn 1. But generalized, nonintegral dimension, such as Hausdorff dimension
HD, may be assigned to any point set in ®V. Sets with zero volume may have HD any real
number between 0 and N. For details, see for example, Young (1983). In fact, requiring
N —1< HD(A) < N is a popular criterion that the attractor A be strange.

As we saw in section 2.1, orbits do not intersect. This must naturally have some
consequences in the cramped phase spaces of one or two dimensions. Such theorems
are called generally “no-pass” theorems. They are too technical to quote in this report;
the reader is referred to GH, section 1.8, or to Wiggins (1990, scction 1.1.1) for details.
But the general moral of these theorems is that 1D and 2D flows cannot be “chaotic.” It
is generally agreed that phase space dimension N > 3 is necessary for “chaos.” We remind

the reader that “chaos” is to be understood as explained in chapter 1; a precise definition
will be suggested later.
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3. DISCRETE TIME SYSTEMS: ITERATION OF MAPS
3.1 Iteration of Maps

Consider a function, or map, F mapping ®Y into RV which is continuous with continuous
first derivatives. We write F : R¥ — RV, F € C. It determines a dynamics in which
“time” is discrete by iteration, namely

ZTp41 = F(z,), n= Iinteger. 3-1)

We shall occasionally call the map dynamics (3-1) a cascr.ge. Thus the nth poini of the
orbit in terms of the initial point ¢ is

zp = F*(z0),  where F*(z¢)= FoFoF :— --0 F(:cos
= F(F(F(--- F(zo)---))), F’(z0) = 0. 3-2)

The symbol F o G denotes functional composition F o G(z) = F(G(z)) (don’t confuse F*,
the nth iterate, with the nth power).

Note that F™'(z¢) = F'(zn—1)F™ Y (z0), where prime means derivative, by the chain rule
of differentiation, if the phase space is ®. By induction,

F"Y(z¢) = F'(zn—1)F'(zpn—2)... F'(z9) (Chain Rule). (3-3)
In the case of RV, replace F' = dF/dz and F™ by DF and DF", the Jacobian matrices
(2-10), and (3-3) implies matrix multiplication.

Again, orbits do not intersect under certain lenient conditions, cf. the theorem (2-2) for
flows. If F has an inverse F~! which is C1, the orbit based at =g is the set (3-1) for
—00 < n < 00 ; if F is, however, noninvertible, (3-1) with n = 0,1,2,--- is the orbit. In
(3-2) and (3-3) n was tacitly taken positive.

3.2 Linear Stability Analysis
3.2.1 Linear Maps

If F(z) = Az, A = N x N real matrix, the map is linear. If we can diagonalize A, we
define the unstable, stable, and center subspaces by dividing the eigenvectors into the three
subsets

{u3,uz,---un,} suchthat |\;|>1,
{vi,v2,---vN,} suchthat |\ <1, (3-4)
{wy,ws, - -wn,} suchthat |X\|=1,

with N* + N°® 4 N¢ = N. E*, E*, E° are invariant, and vectors based in them blow up,
decay, or vary “algebraically” in length respectively as n — +co. For now the explicit
orbit solution is x, = A™xo. Hence for 29 = 3 ¢;e; belonging to one of these subspaces,

Tp = A" ZCjej = ij)\;-lej, (3 -5)
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from which both assertions follow.
Again, the general case 4 not diagonalizable is not essentially different. See appendix A.
Exs. 3.1 and 3.2. >me as Exs. 2.1 and 2.2, but let the given matrices A define

linear map dynamics.

3.2.2 Nonlinear Maps

Again, we can use the linear stability analysis for linear maps by linearizing about a fized
point z* of the map F : F(z*) = z*. Set z¢ = z* +u, |ju| small, and z, = z* + un.
Substituting into (3-2), expanding, and keeping only terms up to O(u), we get

Tn = F*(z* +u) = F*(2*)+ DF"(z*)u = * 4+ [DF(z*)]"u = un = [DF(z*)]"u. (3 - 6)

We used F*(z*) = z* and DF"(z*) = [DF(z*)]"* from the chain rule (3-3), since zo =
Ty = Tg+++ = Tp—y = z* for a fixed point. But (3-6) is just the orbit for the linear flow
with A = DF(z*). So the linear stability analysis for the fixed point is performed just as
in section 3.2.1.

3.3 Stability Types of a Fixed Point
These are defined just as in section 2.3 with the changes ¢:(zo) — F™(z0), t — n.
3.4 Connection of Stability and Linear Stability Analysis

We now call a fixed point of a map F hyperbolic if DF(z*) has no eigenvalue A with
Al =1, or if E¢ = 0. Sources and saddle points are defined by the same language as in
section 2.4 where now, of course, the invariant subspaces are identified by (3-4). For z*
hyperbolic there exists a homeomorphism mapping the orbits of the nonlinear map onto
those of the linearized map in some neighborhood of z* and preserving their sense. Thus
in the hyperbolic case the linearization determines the stability type, and we get the same
two cases: z* is asymptotically stable (a sink) iff only E* # 0; it is unstable (a source
or saddle point) iff E* # 0. Again, if E° is not 0, linear stability does not in general
determine the stability type of z*.

3.5 Topological Equivalence of Map Dynamics
Given two cascades (map dynamics) defined by F(z), z € X, and G(y), y €Y,

Def. The F-cascade and G-cascade are topologically equivalent iff
there exists a homeomorphism h: X — Y such that ho F=Goh. 3-7)

This is simpler than the definition (2-17) for a flow. This guarantees that every orbit of F
is mapped into one of G in a continuous manner, and vice-versa. The F-cascade can be
continuously deformed into the G-cascade and vice-versa: they are not really dillerent from
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a topological point of view. In particular, the nonlinear cascade is topologically equivalent
to the linearized cascade around a hyperbolic fixed point.

3.6 Stable and Unstable Manifolds of a Fixed Point

These are defined by exactly the same language as those for flows, section 2.6, with the
substitutions ¢4(z) — F™(z) and t — n. The Stable Manifold theorem reads the same.
N.B.; W* and W* for a map are manifolds (“continuous” sets like curves, surfaces, volumes,
etc., or technically: locally just like RM for 1 < M < N) even though the orbits are discrete
point sets. This, of course, is because we can start this hopping orbit anywhere in phase
space C ®N. W?* and W* for maps have the same properties as those detailed in section
9.6.1 for flows. But notice an important difference. A nonempty intersection wsnwe
for flows which is not a fixed point must be at least 1D since they must intersect in whole
orbits, which are 1D manifolds (curves). However, a nonempty W NWH for a map can
be 0D, a point ¢ which is not a fixed point, as depicted in Fig. 3.1.
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Fig. 3.1 Transverse homoclinic point ¢.

Let us study this situation a little more because of its great importance in the subject of
“chaos.” We consider an orientation preserving map F, in ®2 for simplicity, with hyperbolic
fixed point z* whose stable and unstable manifold curves W* and W* intersect transversely

in a nonfixed point ¢ (Fig. 3.1). Such a ¢ is called a transverse homoclinic point (to a*
understood). Consider the orbit based at g,

{, F%q), F ()0, F(q), F*(q),"}. (3-38)

Then since ¢ € W N W* and these manifolds are both invariant, the infinite set of points
(3-8) must also lie in both W* and W*. Therefore W* and W* must wind between each
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other (must be “interleaved”) in a complicated way, intersecting a# leastin the infinite point
set (3-8). These intersections get closer and closer without limit becausé F*(q) — #* and
F-"(q) — z* as n — +oo by the very definition of W* and W*, respectively. Such an
orbit (3-8) is called a transverse homoclinic orbit, and the complicated geometry of the
interleaved, infinitely often intersecting W* and W* is named a homoclinic tangle. So Fig.
3.1 leads inevitably to Fig. 3.2.

x"'?
N
{

Fig. 3.2 Homoclinic tangle

It can be proved that the map dynamics is chaotic in a well-defined sense in a neighborhood
of any transverse homoclinic point, (see Wiggins, 1990, section 4.4, top p. 471). We will
return to this notion of chaos in Chap. 5.

3.7 Periodic Orbits

If we have a point g such that F*(zg) = zo but F™(zo) # %0, m < n, we sec that the n
points

2y = F(20),32 = F(z1),+*, 20 = F(zn-1) = 0

form a periodic orbit of period n (or n — cycle, or fized point of order n). Each 2 is a fixed
point of F™ : F*(z;) = 2, ¢ = 0,1,--+,n — 1. The stability of the n-cycle can thus be
discussed in terms of the stability of the fixed points of the map F'™*, a subject which we
have already covered, and 1s fully equivalent to it. Note that

DF"(z;) = DF(z¢)DF(z1):++ DF(%4-1), i=0,1,--,n -1,
by the chain rule (3-3) for 7, so every fixed point of F* belonging to an n-cycle has
the same Jacobian matrix. So we end up with the characterization of the stability of

an n-cycle in the hyperbolic case (no eigenvalue A of DF™(zo) with |A| = 1): the n-cycle

32




is asymptotically stable (an attraciive n-cycle) if all |A| < 1; it is unstable (a repelling or
saddle n-cycle) if some |A] > 1. For the notion of convergence of an orbit to an attractive
periodic orbit y: F™(z¢) — v, n — +00, see the remarks in section 2.8.

3.8 Bifurcation of Maps

The motivating discussion of subsection 2.7.1 for flows applies here too. So it is clear that
the analogue of the definition given there is: there is a local bifurcation of the map F, at
the fixed point * when an eigenvalue A of DF,(z*) crosses the unit circle in the complex
eigenvalue plane. If it crosses at the bifurcation value piy of the parameter, then [A(i)] =1
and this value is isolated. The same statement applies for local bifurcations near periodic
points with the substitution of F; for F),.

The definition of structural stability and of a general bifurcation for a map is the strict ana-
logue of (2-23), with the cascade zn41 = F,(z,) replacing the flow and the perturbations
61F(z), 62F(x) of Fy,(x) replacing the perturbations of f,, (z).

Ex. 3.3 Find fixed points, their stability, and bifurcation values (if any) for the
following real cascades. Draw the bifurcation diagrams.

a)Fu(z)=p—-2% pewR
b)Fu(z) = pz(l-2), 0<p<4
c)(z,y) - (y,~2/2 +py —y3), p > 0. Thisis a cascade in R2.

3.9 One-Dimensional Maps

For 1D maps there are special techniques available: we mention in particular the graphical
technique for plotting the phase portraits. In the zy plane draw the graph of the curve
y = F(z) and the diagonal line d : y = z. Then an algorithm for constructing the orbit
is to draw the steps bounded by the line d and the graph y = F(z) as illustrated in Fig.
3.3. The projections of the points at which the steps meet the graph onto the 2-axis then
obviously give the orbit a, F(z), F?(z),--.

The intersections of the graph and the diagonal line d give the fixed points of the map. If
F™ instead of F'is plotted, these intersection points give the fixed points of order n, that is,
the points of the n-cycles. Fig. 3.3 shows the behavior of orbits near attractive or repelling
fixed points. Specializing the criterion of section 3.4 to N = 1, we have A = dF(a*)/dx;
and a* is attracting if |\] < 1, repelling if |]\| > 1. But since X is geometrically the
slope of the graph at z*, we can determine the stability of a fixed point (or of an n-cycle)
visually by noting whether the slope of the graph at the fixed point (or fixed point of F*)
is less than or greater than unity in magnitude. This can be seen in the figure, where the
influence of Sgn A on the orbit is also evident. Also shown is the case A = 0, where for this

particular map the orbit actually converges to 2*, though, as we remember, lincar stability
analysis is powerless in this case.
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F(x*» 1 . ' F(x*) < -1

Py

Fig. 3.3 Graphical method illustrated. Top: attractive fixed points; bottom: repellinig
fixed points.

3.10 The Logistic Map

We iltustrate some of these topics, in particular bifurcation, on a famous and well-studied
1D map
Fu(z)=pa(l-z), 0<z<1, 0<pu<4. (3-9)

See Bai-Lin (1984, section I4), Feigenbaum (1978). For the shown parameter range F' maps
the unit interval into itself, so that we can restrict our phase space to 0 < ¢ < 1. Itis
marvelous that such a simple-looking dynamics (one-dimensional, only a quadratic map!)
has revealed an incredibly rich pattern of stability regimes, including “chaos,” various parts
of which show up in real nonlinear physical systems of the greatest complexity.

The fixed points of (3-9) are &} = 0, o3 = (u — 1)/p. The cigenvalue A = F(2*) =
p(l —22*), 50 Ay = p, Ay =2 — p. Hence, in 0 < p < 1, 2} is stable, 23 ¢ phase space.
(In section 3.10 let “stable” be short for asymptotically stable, since we shall discuss the
stability type only for hyperbolic regimes.) In 1 < p < 3, &} is unstable and 23 is stable.
Thus yy =1 is the first (local) bifurcation value. That is, at & = 1 both |A;] and |As]
passed through 1; z} lost stability and 23 gained stability.

At ¢ =3, 23 = 2/3 has Ay = —1, so 2} becomes unstable as y increases through 3. So
ftz = 3 is the second (local) bifurcation value. Since there are no further fixed points of
F,, what happens? You can check that Fﬁ develops two new rcal fixed points zg,z;, €
phase space, that is, which are not fixed points of F,. For u = 3.04, slightly greater than
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pe =3, 2o =0.5984... and z; ~ 0.7306.... Thus we have a 2-cycle. It is a stable 2-cycle

because ’ ’ \
|F3' (o)l = |Fa'(z1)] = [F(wo) Fu(z1)l = p2l(1 = 220)(1 — 221)|
~ p? x 0.0908 < 1in gy < p < g for some pi3.

Here is the first example of a period-doubling bifurcation, here from a stable orbit of
period 1 = 2° to a stable orbit of period 2 = 2!. Now continue to incrca,?q 1 at uz =
14 /6 ~ 3.4495. .. the 2-cycle loses stability and a 4 = 22-cycle gains stability. Namely,
F, develops four new fixed points y; ~ not fixed points of F,, Ff,, or Fg — and these are

stable: |Fi'(yj)l < 1,5 = 0,1,2,3, while |[F2'(x;)] > 1,7 = 0,1, in 3 < p < py for
some 4. This is the second period-doubling bifurcation, from a stable 21-cycle to a stable
22-cycle.

As p increases still further, there is a period-doubling cascade (“cascade” is here used in
the usual sense, not as short for “map dynamics.”): stable 2"-cycle — stable 2"+1-cycle
as n — +00. It can be shown that the corresponding bifurcation values pipq4o = poo &
3.5699.... We can display this on a bifurcation diagram in which only the stable 2™-cycles
are shown (Fig. 3.4).

-t

stable
fixed
poui_xts

o
orders

|
8 1 3 3.45 357 4
! y2 Y3 Pe p —>

Fig. 3.4 Partial bifurcation diagram for the logistic map (not to scale)

Fig. 3.4 ends at po. We postpone the complete bifurcation diagram until we discuss a
few more topics.

Consider now the ratio of successive parameter intervals between period-doubling bifurca-
tions. The limiting ratio

§= lim EnTHn=1

~ 4.6692016091 - - - (3 —10)
=00 Unt1 — Mn
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does exist, so tliése parameter intervals decrease asymptotically as a geometric sequence.
The ratio § is a wniversal number in the seénse that it turns up in many, diverse physical
phenomena wliich show period-doubling behavior. See, for example, Chapter 8. Since the
convergence is tapid, (3-10) can be used to predict un+1, given uy and gy, with fair
accuracy. For example,

i = ps + 6 (s — po) = 3.45 + (3.45 — 3)/4.67 ~ 3.55,

which is correct to two decimal places.

3.10.2 Graghical Treatment of Period-Doubling

The graphical method of section 3.9 can be applied to elucidate the fundamental ge-
ometrical réason for the period-doubling phenomenon. This adumbrates the ideas of
self-sirnilarity, renormalization group, and fractals.

Consjdér first Fig, 3.5. We can literally see how the stability of the fixed points of F, and
F? changes as ju is increased from 0 to 3.

F‘Z
1: ol
| s |
l l P
i ™~
| LNy
! Rt rtadt §
N .
! ") 'slope L
i O l -~ .
; ‘ l,.f/o O\To o\ !;
b !
. ! ;
0 172 1%
p=3
1<p<3
ad<y <t

Fig. 3.5 Bifurcations of the logistic map by the graphical method

"The behavior described in subsection 3.10.1 can be read off from the slopes of the respective
functions at their intersections with the diagonal. The zero fixed point of F, is at first
stable. At p =1 it goes unstable while the new, nonzero fixed point gains stability for the
range 1 < 4 < 3. In the range 0 < y < 3 these are the only fixed points of F? in phase
space, and they have the same stability for Fﬁ as for F,. Fig. 3.6 shows what happens for
3 < p < p3 = 3.45. The iterated map F,f suddenly gains two new fixed points at y = 3.
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They are stable, and correspond to the stable 2-cycle of F, shown. The steps, constructed
by the graphical algorithm, close on themselves, the ma,rk ofa perlodlc orbit.

l y=x

—_—F
——— —FZ
e stable

o unstable
w =stable 2-cycle of F~

Fig. 3.6 Unstable fixed point and stable 2-cycle of F,

For p around p3 we get the situation of Fig. 3.7. The new fixed points of F? of Fig. 3.6
go unstable at u = u3, while two stable 2-cycles of F? develop at the same time. The

latter correspond to four new fixed points of F4 whlch are stable. They also correspond
to a stable 4-cycle of F,,. Thus history repeats xtself we can see the geometric origin of
the period-doubling cascade

Note the similarity of the graphs of F,, and F2 in the neighborhood of unstable fixed points
and stable 2-cycles for each graph, that is, compare Figs. 3.6 and 3.7. Take the regions V',
V4 enclosed by the dotted squares to the rlght andleftof 2 =1/2in Flg 3.7. If we magnify
V4 by a certain factor o and translate it to coincide with the region V] in the dotted square
of Fig. 3.6, the graphs of F- and F, practically coincide for the appropriate p and fi.

The same is true for Vy after an inversion in the point (z,y) = (1/2,1/2). And similarly
for all further period-doublings. The magnification factor a quickly approaches another
universal pure number. Thus a graph displaying all F2 ,yn=20,1,2,3,--, together, for

appropriate parameter values ji fin in the ranges pn41 < pn < Knt2, shows self similarity
on all length scales. Such a set is called a fractal.

3.10.3 Tangent Bifurcations

We have scen that the slope of Fﬁ" at one of its fixed points decreases through -1 at
i = n42, & period-doubling bifurcation. This is a pitchfork bifurcation for F,'f" (Fig.
3.8).

There is another very important local bifurcation for the lOglbtlc map, the tangent
bifurcation, which leads to intermittent behavior. Intermitiency is defined gencrally as
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Fig. 3.8 Period-doubling bifurcation for the logistic map: a pitchfork bifurcation of F;f’"
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regular behavior interrupted by random bursts of “chaotic” behavior. We can illustrate it
on the simple 1D map

Gu(z)=p+z -2t
for z and p around zero (Fig. 3.9).

For 1 <0, there is a narrow neck between the graph of G, and the diagonal line. The
orbit point spends a long time in this neck and is apparently converging to the false fixed
point £ = 0. Once out of the neck, there may be “chaotic” behavior in the general system
which shows intermittency until the orbit point falls “by chance” into the entrance to the
neck again, and the regular behavior repeats. As u increases through 0, the bifurcation
value for the model G, the intermittent regime disappears, and a pair of fixed points, one
stable, one unstable, is born (Fig. 3.10).

This happens in the parameter regime po, < p < 4 for the logistic map (3-9); pairs of m-
cycles of odd order m = k2", k = odd integer, are born, preceded by intermittency. Thus
we are saying that for u around one of these tangent bifurcation values pjp, the dynamics
of the logistic mep F), or one of its iterates F;" is topologically equivalent to the dynamics

of the model map G, p = 0, in sufficiently small neighborhoods X or X,, of phase space
[0,1].

The full bifurcation diagram of the logistic map in 0 < p < 4 is shown in Fig. 3.11,

We have explored only part of the stability structure of the regime (uoo,4] here; for more
details see the cited specialized works.

However, one further feature of this regime should be mentioned here: it is the “chaotic”

regime in the sense that the Lyapunov exponent x > 0. (We have already seen this for the
single value y = 4 in section 1.3.)

(';a x) Gy (x) G, )
y=X
y=x
X j X
e = stable
O =unstable

Fig. 3.9 Tangent bifurcation by the graphical method
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Fig. 3.10 Tangent bifurcation diagram
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Fig. 3.11 Full bifurcation diagram for the logistic map

3.10.4 Lyapunov Exponent for 1D Maps

Let 5, = F"™(z9) be an orbit of a 1D map F. For an initially nearby orbit we have
xy = g + €, € small. Then
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n—1

e=1h — 2. % F¥(zo)e=¢ [| F'(z))
=0

by the chain rule (3-3). Take absolute value, write |e.] = €*X=]¢], take the natural
logarithm, and divide by n. This defines xx. Then we have the definition

) ) 1 n—1
X = Jim xn = lim ~ Jz:;lnll:" (z;)I- : (3-11)

If this limit exists, x is called the Lyapunov exponent (LE) of the orbit based at xo. This
can be gencralized to maps and flows in ®" and even beyond phase spaces C RV, but the
generalization is not trivial. We postpone this to Chap. 5.

You see that x is the average of the linearization growth exponent In|F’(z)| along the
orbit. In fact, if zg is a fixed point z*, then x = ln|]A\] = n|F'(z*)], and is.> 0, =0, or
< 0 according as [A] > 1, =1, or < 1. If y > 0 for a general orbit, then it is diverging
(initially!) at an exponential rate from any orbit which is sufficiently close to it at some
time n. This is a popular signature of sensitive dependence (SD) in the physics literature.
Note also that the LE of a stable n-cycle < 0 (Ex. 3.4).

Ex. 3.4 Prove that x < 0 for an (asymptotically) stable fixed point or periodic orbit.

Prob. 3.1 For the logistic- map (3-9) and specific parameter values p = 1.5, 3.1,
3.5, 3.5699, 3.6, 3.828, and 4, use a microcomputer or programmable calculator to do the
following:

a. Plot the orbit for each u for a typical initial value 29, 0 < 290 < 1, and a

sufficiently large number n of iterates.

b. Try to guess the stability types of whatever attractors, if any, exist. (Hint: it
is essential that you plot the orbits, not just list the points in a computer printout, so as
to be able to identify the asymptotic [large n, after transients die out] behavior “by eye.”)
For example, “stable 3-cycle” might be an answer here.

c. Calculate the LE yx of each of these orbits, and try to correlate y with the
observed stability type.

3.11 Poincaré Maps

A Poincaré map of a flow is one of the most valuable tools for studying flows in nonlinear
dynamics. It reduces the dimension of the phase space by at least 1; it reduces continuous
orbits to discrete orbits (easier to compute); nevertheless, it gives a complete and equivalent
picture of the stability or “chaotic” behavior in sufficiently small neighborhoods.

A Poincaré map is commonly used to study flows in three situations:

¢ To study the stability of periodic orbits (limit cycles).
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e To study time-periodic flows. These are nonautonomous flows such that f(z,t) =
f(z,t + T) for some T, all z € R¥. These usually arise from periodic forcing terms in
o To study the flow near a hemoclinic or heteroclinic orbif. These are orbits which
join a hyperbolic fixed point z* to itself, or which join two hyperbolic fixed points 23, r3,
respectively. Such an orbit must therefore lie in the intersection 1V* N W™, where both
manifolds belong to z* in the homoclinic case, or one belongs to z3, the other to 3, in

the heteroclinic case. Such orbits are not usually structurally stable, so any slight change
of the parameter breaks them in two. “Chaotic” flow then ensues.

The subject of Poincaré maps is a huge, mathematically deep one. We will only sketch the
key idea here, and assign an illuminating problem. For the theory, see GH section 1.5, or

Wiggins (1990, section 1.2) for the basics. Most of their succeeding chapters use Poincaré
maps as an essential tool.

Consider the application (1) above. Let a flow z = f(z) in RV with orbit function now
written ¢(¢,z) have a periodic orbit of period T. We pass an (N — 1)-dimensional surface
¥ through the flow, cutting -y transversely at z5. Take a smaller open set V C ¥ which
contains zo: Then if V and ¥ are small enough, the orbits which pass through V will
intersect ¥ when they come around again, in a time close to T'. The map that associates
points in V with their points of first return in ¥ is called the Poincaré map; call it P.
Then more precisely,

P:V—% by z+ ¢(r(z),z), (3-12)

where 7(z) is the time of the first return of z to . Note 7(z9) = T and ¢(T,z¢) = =o.
Thus P maps x into zo; z¢ is a fixed point of the Poincaré map. I is called a cross section
of the flow f. Figure 3.12 will make all of this clear.

A\

N

Fig. 3.12 Illustrating the Poincaré map




Practically speaking, one must have a pretty good idea of the flow phase portrait before
being able to choose a cross section intelligently. However, the choice of a particular &
satisfying the definition above is not too critical, because any two such maps, P and P,
are topologically equivalent!

Now consider application (2) above. The nonautonomous flow is £ = f(z,t), and obeys
f(z,t + T) = f(z,t) for all z. Let ¢¢(xo) be the orbit function, with o(z9) = zo. Then
define the map P by

P(z0) = ¢7(z0), allzo € RV. (3-13)

That is, we simply sample the flow at times nT, n = 0, £1, £2, £3,---, to define the
map orbit. For note P*(zy) = dn1(20). (Of course, this map can be used for autonomous
flows as well.) Unlike case (1), P need not have a fixed point. If it does, say P(z*) = z*,
then z* corresponds to a periodic orbit of period T for the flow. A fixed point of order
n : P*(z*) = z* corresponds to a subkarmonic of the flow of period nT.

The map (3-13) is really of the Poincaré type, as you can see by making the flow
autonomous by writing = f(:v,O),é = 1; then the cross section ¥ is the N-dimensional
surface § = 0 cutting the flow transversely in the enlarged phase space RV x S, where
5! is the unit circle (that is, 8 is an angle and measured mod 27). Then the time of first
return 7(z) = T is the same forallz e RN =V = X.

Prob. 3.2 Consider the harmonically forced, damped, Duffing oscillator
i+ 62—z 42 =ycoswt, §>0. (3-14)

This problem is to be done a programmable computer with graphics display. Take § and
w fixed, say § = 0 or 0.25 and w = 1, and consider ¥ variable, 0 <y < 1.

a. Unforced case v = 0. Put (3-14) into autonomous flow form in 2. Find the
fixed points, their invariant subspaces E*, E*, E¢, plot a phase portrait which indicates
also the invariant manifolds W*, W* of each fixed point. Do this for § = 0 and .25.

b. Now let 4 be nonzero: consider the cases v = 0.20, 0.30, 0.40, all with § = .25,
Use the Poincaré map P, = (3 — 13) with T' = 27 /w = 2r. Numerically plot W* and W*
for the saddle fixed point of P, near (0,0).

Remarks and hints on Prob. 3.2: This is a fairly ambitious problem. Part (a) can be
done more or less analytically with good intuition. As to part (b), luckily the map P, is
structurally stable (section 3.8) at 4 = 0, and so it continues to have three hyperbolic fixed
points near those of part (a) for small 4. To plot W* and W* numerically for the saddle
point z*, determine the directions E* and E* and then iterate a number of initial points
on these directions close to z*. (Remember that W* and E*, W* and E* are tangent
at the fixed point by the Stable Manifold theorem, see section 3.6!) To get W*, iterate
P71 to get W*, iterate P,. There is a (global) bifurcation somewhere between v = 0.10
and 0.20. You will find a transverse homoclinic orbit (section 3.6) developing when W*
and W* intersect transversely, thus “chaotic” motion. For v large, = 0.40 or greater, the
graphics should reveal what appears to be a strange attractor (see section 2.8; an obvious
analogous definition holds for maps). It apparently coincides with W*. You may want to
compare your results with GH, section 2.2.
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4. HAMILTONIAN SYSTEMS

4.1 Generalities

The flow
§=0H/dp, p=-0H[dq, ¢,peR", (4-1)

in RN, N = 2n, is a Hamiltonian system of n degrees of freedom. H = H(q,p,t) is
called the Hamiltonian. If H does not explicitly depend on ¢, the flow is autonomous, and
H(q(t),p(t)) is a constant (or integral) of the motion. In other words, H is conserved. For
we can easily prove, using the motion equations (4-1), that

dH/dt = 0H/®t, (4-2)

which equals zero in the autonomous case. Then the flow is confined to the (2n — 1)-
dimensional energy surfaces H(q,p) = const. in phase space.

Hamiltonian flows conserve volume in phase space, and are nondissipative, since V. f = 0.
Let us check this:

i=1

whether or not H depends on t. Hence they can have no low-dimensional attractors of
the dissipative type, where an initial nonzero volume in phase space shrinks in time to
zero volame (section 2.8). Hamiltonian flows are usually considered more fundamental
than dissipative flows, since microscopic physical motion equations like (4-1) possess time-
reversal invariance while dissipative flows do not. (Note the dissipative term +62 in the
damped Duffing oscillator (3-14), for example.) Dissipative systems in ®" are truncated
models of T-invariant systems in a larger phase space RV', N’ >> N, where the interaction
between parts of the larger system is modelled as dissipative terms in a smaller system.

As for the question of stability, note that all stable fixed points of (4-1) must be centers
(the asymptotically stable, or sink, case is excluded). Refer to section 2.3 to recall these
definitions. We can see this as follows. Consider a stable fixed point z*.

0=V.f E(Zafk/axk) =Tr Df(z*) =
z* k z*
N
=Y A=Y Relp=0. (4-4)
k k=1

Here the {Ar} are the eigenvalues of the Jacobian matrix at the fixed point. But if z*
is stable, no ReAx > 0 (this seems evident, and can be proved). Therefore no Relr < 0
from (4-4), since the real parts must add to zero! Thus all Redx =0, k =1,2,--- N. This
says that E¥ = E* = 0; only E° # 0. Then it can further be proved that this guarantees
that z* is in fact a center for most (“typical,” “nonpathological”) Hamiltonians. One
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says: “under gemeric conditions.” So from now on we assume that all fixed points of a
Hamiltonian system are either centers or saddles.

Examples. A simple, important, autonomous Hamiltonian system for n = 1 is the linear
harmonic oscillator H(g,p) = (p* + ¢)/2, in properly scaled variables. There is one fixed
point (0,0), a center, and all orbits are periodic with the same period 7 = 27 /w, where

w = \/k/m =1 here.

A separatriz is a branch of W¥(p) or W*(p) for a hyperbolic fixed point p (Fig. 4.1).

separatrices of p

Fig. 4.1 Two cases of separatrices

The general definition of hyperbolic fixed point was given in section 2.4; for a Hamiltonian
system there is only one possibility: p is a saddle - the source and sink cases are out.
The harmonic oscillator has no separatrices since it has no saddles. However, another,
all-important example of an n = 1 Hamiltonian system does have separatrices. This is the
1D pendulum (Fig. 4.2):

§=p, p=-—asind;H(8,p) =p*/2-acosb. (4-195)

Phase space here is actually £ x S1, 5! = unit circle, since  is an angle, measured mod 2.
Thus, topologically it is the surface of a cylinder rather than the plane 2. The different
fixed points are two, (0,0), a center, and (x,0), a saddle. For (—=,0) is to be identified
with (7,0), and (7, ) with (0,0), etc. The phase portrait looks like Fig. 4.3.

Note the two separatrices, so-called because they separate regions of qualitatively different
orbits. Inside them the orbits are closed, going from approximately circular harmonic
oscillator orbits near the center to distorted limit cycles whose periods — oo as they
approach the separatrices. (Why is this obvious?) This type of periodic motion is called
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Fig. 4.2 The 1D pendulum

® center

W saddle

—————— separatrices

Fig. 4,3 Phase portrait for the 1D pendulum

libration (def. the orbit is closed in phase space). Outside the separatrices the orbits are
open curves. This type of motion is called rotation (def. p(q) is a periodic function). So
the harmonic oscillator shows only libration, while the pendulum shows hoth libration arul
rotation. The geometric significance of these two js obvious. The pendulum librates when

46



its energy is low enough so that it swings back and forth like the bob of a grandfather
clock. When it has enough energy, it rotates around its pivot. The stable fixed point is
the pendulum hanging straight down, the unstable fixed point is the pendulum balanced
straight up. The separatrices are the limiting libration with angular amplitude = and
infinite period.

For a good treatment of Hamiltonian systems see Goldstein (1980).
4.2 Integrable Systems

There are three presumably equivalent definitions of an integrable Hamiltonian system.
We give all three, since each one casts a different light on the concept. From now on
we assume an autonomous system with analytic Hamiltonian H(q,p). For real-valued
functions f of real variables z € RV, we have the

Def. f is analytic in a neighborhood V C ®¥ if f(z) admits
a power series expansion in z about every point o € V. (4-6)

Thus we are assuming that H has a power series expansion in z = (g,p) € R?" except
possibly at some singularities.

Def. 1. The system (4-1) is integrable if the solution curves ¢(xo)
= (g(g0, Po, t), (g0, Po, t)) are analytic in =g = (go, po) and in ¢. (4-1)

This is the most fundamental definition. One can simply integrate the differential equations
(4-1) and get explicit solutions analytic in both initial conditions and in time.

Def. 2. The system (4-1) is integrable if there exist n independent
analytic constants of the motion Fi(¢(t),p(t)) = const., i =1,2,---n. (4 —28)

There is already one constant of the motion, H itself, (see (4-2)). However, there must be
n—1 further conserved quantities, and all independent (no F; is a function of the other Fj,
J # 1) if the system is to be integrable. These usually arise when the system is not coupled
to external fields, which destroy the symmetry of H under translations or rotations. Then

one gets total linear momentum or total angular momentum, etc., conserved as well as the
energy.

Def. 3. The system (4-1) is integrable if its Hamilton-Jacobi equation
admits a complete solution. 4-9)

This is more technical. The H-J equation is the single partial differential equation
H(q,0W/8q) = E = const., (4 - 10)

for Hamilton’s characteristic function W. A complete solution of (4-10), W(q1,¢2,* - ¢ ;
71,72, **Tn), admits n independent integration constants ;. (The energy E can be
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chosen to be one of these.) We cxplain bricfly how Eq. (4-10) arises, and refer the reader
to Goldstein (1980) for details.

Consider an analytical canonical transformation Q; = Qi(q,p), Pi = Pi(q,p),1 =1,2,-n,
with new I:Iamiltoni@n defined by K(Q,P) = H(g,p), that is, such that the Hamiltonian
form (4-1) is preserved: .

Q =0K/dP, P =-0K/0Q. (4 —-11)

What if we could find a canonical transformation such that K did not involve the Q; :
K = K(P). Then we could integrate (4-11) immediately and trivially, getting

Pi(t) = vi = consts., Q;(t) = a;t + B; ; ai, i consts., (4-12)

where «;(v;) = (0K/3F;) P’ How would we find such a canonical transformation? If

it were generated by a function W(q, P), we would have
p=0W/bq, Q=0W/dP,

(see Goldstein, 1980). We could get a partial differential equation for W by rewriting
H(q,p) = K(7vi) = E = const. asin (4-10). Then it can be shown that a complete solution
of (4-10) guarantees that the canonical transformation (¢,p) + (Q, P) can be inverted to
get the solution

q,-=q.-(ozt+,3,7), pi=pi(at+ﬂ)7)) a,ﬂ,ye%",

from (4-12). The 2n independent integration constants 7;, 5; can be replaced by the 2n
initial values goi, po;, and we are back to the explicit analytic solutions demanded by Def.

1, (4-7). This makes a long story short, but I hope that it gives the essential idea without
oversimplifying.

You may well ask why we don’t simply solve the H-J equation for the system of interest,
thereby apparently getting explicit orbit solutions and proving any system integrable by
Def. 1. The answer is, a complete solution of the H-J equation does not always exist;
in fact, it is rare (a fact not sufficiently emphasized in our standard classical mechanics
texts). In those cases the system is nonintegrable. A famous example is the Newtonian
3-body problem, which worried Newton and all his successors.

Some simple examples of integrable systems:

a. All 1D systems (n = 1). For, solve for p = ¢(g) from H(g,p) = E. Substitute this

into the motion equation ¢ = OH/0p, getting a first order ordinary differential equation
for q. Integrate.

b. All linear flows. For, go to normal modes (that is, separate the variables), getting
the equations §; + w?q; = 0, i =1,2,...n. Integrate.
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4.2.1 Action-Angle Variables

Let us consider a special case of an integrable system. First we assume that the H-J
equation is completely separable in some set. of canonical coordinates ¢, p. This means that
it reduces to the n ordinary differential equations

H;(qi,0W;/0q;) = E; = consts., where

H= Z H,'(q,',p,'), ZE,‘ = F. (4 - 13)

Then onc gets the solution W = Z Wi(gi; @) [ € R" are some general sct of 2 independent
constants, functions of the separatlon constants E;] by quadratures (solve the ith ordinary
differential equation in (4-13) for OW;/0q; as a function of ¢; and Fj, and integrate).
Second, we assume that (at least in some energy regimes) the motion is of libration or
rotution type. This means, more precisely, that the projection of the motion on the ¢;-p;
2-plane for each 7 = 1,2,...n, is libration or rotation as dcfined for the 1D pendulum in
section 4.1. We confine attention to these special integrable systems from now on.

Now we can introduce action-angle variables J, 8, a special case of the separable coordinates
of (4-13). Define the actions

Ji= fp,-dq; = f %—‘qzi(q,-;a)dq; = Ji(a), (4 - 14)

where the integral § is carried out over a complete period of the libration or rotation.
Inverting (4-14), we can express the o; as functions of J € ®". Since I'(8,J) = H(q,p) =
Y. Hi = Y Ei(a), I is a function K(J) of the J only. Then the canonical motion
cquations (4-11) have the simple solutions (4-12). Namely,

§; = OK/[0J; = vi(J) = consts. = 6;(t) = vt + B

Ji=-0K]08; =0 = Ji(t) = J; = consts. (4 - 15)

Because of the definition (4-14) of the actions, these particular coordinates have special,

nice properties. We just list them, and refer the interested reader to Goldstein (1980,
Chap. 10) for proofs and details.

a. The v; = 0K(J)/0J; are the frequencies of the libration or rotation.

b. The bounded motion, that is, libration, z(2) = (q(t),p(t)) is quasi-periodic with
the frequencies v;:

z(t) = Z ajexp[2mij - (vt + B)], j,v,B consts. € R, (4 - 16)
j

Here j-v =37 jivi is the scalar product, j is an integer vector, namely, its n components
are integers, a, are a set of constant amplitudes in ®2" indexed by integer vectors, and the
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sufh ifi (4-16) goes over all integer vectors. We only merition that tle unboiinded motion
(rotation) is simiilar, except that it has an extra term qg - (vt + ) lincar in ¢ in g(2).
Pioperty (a) hiis been a boon in celestial mechanics, since one can compute the fundamental
frequericies just by finding K(J), without solving for the complete motion. As for (b),
hote thit tlic motioii is in general not periodic, since the orbits do not close. Only in the
case that the frequeiicies are commensurable,

Jrev=0, r=12...n-1 (commensurable case) (4 - 17)

for n — 1 linctitly ifidependent constant integer vectors jy, do all orbits closc. This is casy
to see: it means that the ratio of any two frequencies is a rational number. A special case is
that all frequeiicies are integet multiples of some one frequency #y (which need not belong
to the set vy, s, ++ vy). Then the orbit (4-16) is a Fourier series in time with fundamehtal
frequieiicy vg.

Prob. 4.1. Introduce actiori-angle variables and solve for tlie frequency v =

oI (J)/dT for
a. the lingdr harmonic oscillator,

b. the 1D pendulum (4-5). You may want to look at Goldstein (1980) for hints.

4.2.2 N-Torti

The moral of Eq. (4-16) is that the bounded motion of integrable systems lies on invariant
n-toti. For, once we locate an orbit initially in phase space by the 2n numbers o, po,
or equivalently, by the 2n aumbers 6y, Jo, the further position is determined uniquely by
n angles 8;(t), (sce (4-15)). n-dimensional manifolds where the point is specified by n
angles are called n-tori. For instence, a 1-torus is a circle; a 2-torus is the surface of a
doughnut (Fig. 4.4). For n > 3, the n-torus cannot be realized in our physical 3-space,
but is defined similarly. The n actions J; = Jo;, which are constant along the orbit, fix
the particular n-torus on which the orbit lies: this torus is invarient. In the general case
v; incommensurable ((4-17) not true), the generic orbit winds up on the torus endlessly
without closing, and is dense there (as seems reasonable, and can be proved). Only in

the commensurable case is every orbit periodic, and therefore not dense on the torus. For
“dense,” sec below.

But this just means that the dynamics of any such integrable system is topologically
equivalent to the dynamics of n uncoupled 1D pendula! Indeed, if we pass 2-surfaces
through the phase space, they cut the flow in distorted copics of the pendulum phase

portrait (Fig. 4.3). This explains the fundamental importance of the pendulum in
Hamiltonian dynamics.

This long and rather abstract dose of theory is justified by the pay-off. First, integrable
systems can never be “chaotic.” For the motion is at most quasi-periodic, and this is too
regular for the appellation “chaotic.” Secondly, there are implications for the foundations of
statistical mechanics. If the microscopic dynamics of nature were integrable, the necessary
ergodicity assumptions of statistical mechanics could never be valid, For integrable motion
is confined to low-dimensional manifolds, and so could never wander crgodically through
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Fig. 4.4 A 2-torus and an orbit on it

the whole cnergy surface, sampling all states on it, as required by statistical mechanics.
That is, n < 2n ~ 1 unless n = 1. For a preliminary definition we can say that an orbit
is ergodic on the energy surface if it is dense there: given any state x € energy surface og
and any neighborhood V' C 0 of = no matter how small, the orbit passes through V at
some time (or times).

At this point it is natural to entertain the notion that nonintegrable microscopic dynamics
will save statistical mechanics.  Viz., the nice clean integrable Hamiltonians of our
textbooks will be perturbed by realistic interactions into nonintegrable ones. The motion
will then be generically ergodic, energy sharing among the various modes (a mode is one
of the terms in (4-16) characterized by an integer vector ) will take place, equipartition
will set in in equilibrium, etc., and all the properties assumed in statistical mechanics will
follow. To examine this hopeful view we now turn to nonintegrable systems.

4.3 Nonintegrable Systems

A nonintegradle system is simply one which is not integrable. Unfortunately, there is no
sim;.le criterion, such that we need only to look at a Hamiltonian to see if it is integrable
or nonintegrable. The only way is to prove that the system violates Definition 1, 2, or
3 of section 4.2. But there is no guarantee that we can do this. Consequently, we often
work with Hamiltonians which we suspect (from numerical work, say) to be nonintegrable,
without being able to prove it.

In this section, we enter an area, called “dynamical systems,” on which much research
has been done over many years, unlike most work on nonlinear dynamics, which is
comparatively new. Some deep and powerful theorems have heen proved by great
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mathematicians. These results are too technical to give in rigorous form in this report. But
they are so important that they must be included here, even if in nonrigorous, paraphrased
form. My aim, as always in this report, is that the definitions and theorems should make
sense to the reader.

First, we might ask: how many integrable Hamiltonians are there among the set of all
analytic Hamiltonians? The answer is that they arc rare, a set of measure 0 in an
appropriate measure. Nonintegrable Hamiltonians are dense in the set in the same measure.

Second, what is the nature of the flow for a nonintegrable Hamiltonian? The most
important result on this is the famous KAM (Kolmogorov, Arnold, Moser) theorem, sce
Arnold (1978), Arnold and Avez (1968), GH (1983, section 4.8), and Wiggins (1990, pp.
150-153).

4.3.1 KAM Theorem
This can be stated loosely as follows:

KAM Theorem. Given H = Hy + V nonintegrable with Hy integrable
(of separable and rotation-libration type). Introduce action-angle
variables, 8, J for the unperturbed system with Hamiltonian

Hy(J). Assume a) V is “small” in some sense, and b) Hy(J) is
nondegenerate,

0(7’171’2)"‘1’71) . OH,
O(J1,Jay ) #0, vi= oJ; !

where the left hand side is the Jacobian determinant. Then for a

sufficiently irrational set of frequencies v* € R there exists an

invariant torus T'(v*) of the perturbed system H close to the

invariant torus To(v*) of the unperturbed system Hp. (4 —18)

Remarks. a) Frequencies v* are sufficiently irrational if v* - m is bounded away from zero
for all integer vectors m € R". More precisely,

|v* - m| > ajm|| = (4-19)

for some fixed @, # and all m, where ||m|| is the length of vector m. Thus not only can
no integer linear combination of the v} vanish, as in (4-17), but these must actually not
be too small, in the sense of (4-19). b) Sufficiently near a center of H (scction 2.3) the
majority of the orbits of H lie on these “preserved” tori, called KAM tori (sometimes
nonresonant, or irrational, tori). This is the principal moral of the KAM theorem. On
perturbing an integrable system into a nonintegrable one, we do not completely destroy the
regular motion — part of the motion remains confined to low (n)- dimensional manifolds
and quasi-periodic. ¢) The KAM theorem says nothing about the fate of tori Ty(v) whose
frequencies are not sufficiently irrational, that is, about the orbits of H which do not lic on
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the preserved tori T(v*). Might the motion in this complement set be “ergodic” in some
sense? Sce the remarks on statistical mechanics at the end of scction 4.2.

4.3.2 Poincaré-Birkhoff Tlicorem

To investigate the dynamics in this complement set we consider the fate of a rational torus
To(vr) of the unperturbed flow, that is, one whose frequencies are commensurable (4-17),
so that any orbit on it is periodic, and closes. We can define a Poincaré map Py (section
3.11) by cutting this torus transversely by a (2n — 2)-dimensional cross section ¥ lying in
the (2n — 1)-dimensional relevant energy surface Ho = E. Let I cut the torus in the level
curve I'. By a simple theorem, every point of I is a fixed point of Pj* for some fixed m; we
choose the minimum such positive integer m. Now turn on the perturbation V; the same
section ¥ will define a Poincaré map P for the perturbed flow near Tp(i/g) in the energy
surface H = E. The question is, what happens to To(vr), or equivalently, to I'?

For a Hamiltonian map F we have det DF(z) = 1 everywhere, the counterpart of V- f =0
for flows, because it conserves volume in phase space. Hence its fixed points of any order,
F™(z*) = z*, can be proved to be either centers or saddles in the generic case, cf. the
similar discussion for Hamiltonian flows following (4-4). For a map of ®? the situation
is especially simple. Let DF™(z*) have eigenvalues A1, A2, which thus satisfy AjAe = 1.
There are only two possibilities: 0 < A\; < 1 < Az, or A2 = A}, |A;] = 1. The fixed point is
called a hyperbolic point in the first case (saddle point) and an elliptic point in the second
case (center).

At this point we specialize to two degrees of freedom, n = 2. Then we are dealing with
a 3D energy surface, a 2D cross section T, a 2-torus, a 1D I' (an ordinary curve), and
Poincaré maps Py and P taking ®2 into R2. Now we are ready to state the main theorem
in a paraphrased form. For rigorous statements, see Arnold and Avez (1968), GH (1983,
section 4.8), Wiggins (1990, pp. 137-140).

Poincaré-Birkhoff Theorem. For a sufficiently small perturbation V,

the level curve I' “breaks up” into 2km fixed points of P™ for

some integer k. These fixed points lie near I'; km are elliptic

and km are hyperbolic. (4 - 20)

This situation is depicted in Fig. 4.5. T' is often called a resonant level curve, and a certain
region around I' containing the elliptic and hyperbolic points is called a resonance zone.
Also shown are the separatrices joining two adjacent hyperbolic points. If they intersect
transversely in a homoclinic point as shown, this leads to the infinitely complicated set of
intersections known as a homoclinic tangle (or stochastic layer in the physics literature),
which was discussed in section 3.6 for a single fixed point. Incidentally, the integer £ is
not predicted by the P-B thcorem. For the situation km = 3 of Fig. 4.5, k =3, m =1
or k =1, m = 3. The regions around the elliptic points bounded by the separatrices are
called islands. Figure 4.5 shows an “island chain” of three islands in the case m =3 or a
sct of three “separate” islands in the case m = 1.

Take any clliptic point E of H. In any neighborhood of E there is a resonant torus Ty(vg)
of Hy (Arnold and Avez, 1968). We have indicated such an elliptic point £ with a nearby
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(c)

Fig. 4.5 lllustrating the Poincaré-Birkhoff Theorem

resonant level curve I' on the left side of Fig. 4.5. Thus near any of the three “ncw”
elliptic points shown in Fig. 4.5, call it E’, there is a resonant torus To(vy), which breaks
up as the P-B theorem dictates, producing k'm’ new elliptic points {E") (and k'm' new
hyperbolic points). Figure 4.5 can represent this breakup by the substitutions B — E' and
I' - I' = resonant level curve associated with To(vi). But now the P-B theorem can be
applied to resonant tori which lie near the {E"}, producing a breakup of those resonance

zones. And so on ad infinitum. Thus there is infinitely nested, self-similar structure within
any island.

Further, in any neighborhood of an elliptic point of H there are nonresonant, or preserved,
tori of H, as mentioned in section 4.3.1. Thus there is both regular motion (on the preserved
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tori) and “chaotic” motion (in the stockastic layers in the resonance zons) arbitrarily near
any clliptic point, which corresponds, as we remember, to a siable periodic orbit of H.

For the-generdlization to n > 2, see the cited works.
4.3.3 Resonance Overlap

The above discussion of the consequences of the P-B theorem (which Poincaré himself
found mind-boggling) does not exhaust the complications, the possibilities of even more
“chaos.” If V is large enough, the resonance zones may overlap, defined preciscly as the
transverse intersection of stable and unstable manifolds 1¥*(x;) and W*(x-) for z; and
x hyperbolic points frou iwo different resonance zones. This is illusirated in Fig. 4.6.

Fig. 4.6 Resonance overlap

Then the inescapable argument of section 3.6 implies infinitely many transverse interscc-
tions, thus transverse heteroclinic orbits, and heteroclinic tangles.

There are theories which offer quantitative methods for handling this P-B breakup of
resonance zones, in particular, Melnikov’s method, (see GH, 1983, scctions 4.5 and 4.6 and

Wiggivns, 1990, section 4.5). For further developments, especially resonance overlap, sce
Chirikov (1979).

4.4 Examples of Nonintegrable Systems
Consider first the “double resonance” Hamiltonian
H= HO(JJ 3 JZ) + fum COS(TTlB] - n02) 4+ Ginn COS(])9| - l/g-_;) (4 — 21)
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in action angle variables J;, 6;, z = 1,2; m, n, p, ¢ arc posiiive integers.  For fiuqn
and g,.x # 0, H is presumably nonintegrable, and if they are small enough, the KAM
and Poincaré-Birkhoff theorems can be applied. Construction of a Poincaré map P and
explicit nmnerical integration reveal the following features (Walker and Ford, 1969).

For low cnergies E the phase portrait shows the general appearance of the superposition
of two resonance zones corrcsponding to frequencies close to the commensurable ones ug)
and {2 satisfying

mvgl) — nugz) =0, pugl) - qugz) =0.

(4-22)
Here the resonant tori To(vr) with frequencies Vg) and ug) correspond to the two inicgrable
Hamiltonians (4-21) with gmy = 0 or fma = O respectively, whose 2-tori can be plotted
analytically. Most tori are preserved. As E is raised, one sees the breakup of these
resonance zones in accordance with the P-B theorem, the appearance of islands, traces of
homeclinic stochastic layers, etc. For sufficiently high E resonance overlap occurs. One
notes heteroclinic stochastic layers and single «rbits which seem to wander over the whole
energy surface. The KAM tori disappear.

Consider now the Hénon-Heiles Hamiltonian (Hénon and Heiles, 1964)

1 1 1
H =5} +p)+ 5@ +6) +di — 30 (4-23)
This is prcsumably nonintegrable. A Poincaré map was constructed by taking T to be

the section q; = 0, ¢; > 0 of the 3D energy surface. The map was plotted numerically for
various F < 1/6, for which the motion is bounded.

In general one sees preserved tori and broken-up resonance zones. In particular, a) E =

1/12. Only 2-tori are seen. b) E = 0.106. One sees several large islands and two smaller

8-island chains. There are signs of a stochastic layer near separatrices. ¢) E = 0.125.

- Some preserved tori. A random splatter of points from a single orbit, possibly ergodic. d)
E =1/6. No visible 2-tori. Irregular, possibly ergodic orbits. Sce Fig. 4.7.
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4.7 Poincaré map orbits for the Hénon-Heiles systemn




5. MEASURES OF CHAOS
5.1 Introduction

“Chaos” was already introduced in an informal way in Chap.1, where we saw that although
there is no consensus on a procise definition yet three or four criteria are usually acceptedin
the physics hterature as “signatures of chaos.” The core idea of “chaos,” however, as most
would agree, is sensitive dependence, often abbreviated SD hereafter. We will concentrate

on SD i in this chapter, and treat the other signatures much more bricfly.

The meaning of sensitive dependence (on initial conditions, that is, initial point ¢ in phase
space, understood hereafter) is the unpredictability of the orbits, even though the dynamics
is of course a deterministic system. Say we have a system which does possess SD (not all
of them do!) and we wish to compute the orbit ¢,(20) based at zo. No matter how closely
we appmmmate g, it is in principle possible (for certain xy) to make a fixed gross error
in the orbit after some time t: the calculated orbit bears no resemblance to the true orbit
¢,(mo) after thlS time. The term “unpredictable” seems justified for this property. The
necgss:ty qf approximating o is forced upon us by inevitable small errors, by the finite
or 106 or of qur supercomputers of the future. Also, it has nothmg to do with noise,
errors whlch arise from perturbations originating outside the system (although noise will
compound the error) - it is an intrinsic property of the deterministic system.

There are two versions of SD current today ~ the mathematician’s and the physicist’s,
which, strangely enough, seem to coexist without being aware of each other. The
mathematician’s definition focuses on this basic idea of unpredictability, the minimal,
irreducible idea, such that anything weaker would be admitted as regular, predictable
motion by everybody. It is something very like the familiar idea of the continuity
or discontinuity of functions at a point generalized to apply to whole orbits. The
mathematician’s definition does not concern itself with how fast orbits separate, or how
long it takes to make this “fixed, gross error.” The physicist’s definition on the other hand
requires fast (exponential) separation of orbits in a certain sense; we shall call it exponential
SD This is partly because there is an easy way (in principle) to check this fast SD, namely
by the calculation of Lyapunov exponents. But the main reason, I suspect, is the widely
held belief that exponential SD is necessary to ensure “chaos,” since the mathematician’s
SD, call it minimal SD, is known to include cases of “trivial SD,” where the behavior is
clearly not “chaotic,” for example, the free particle. However, this belief is mistaken, as
we shall see. Minimal SD occurs on certain sets in phase space; it is natural to limit these
sets in a certain way. Then minimal SD, so limited, is essentially equivalent to chaos; it
has all the properties that we associate with that term. So chaos can finally be defined this
way. There is no need to mention the rate of divergence of orbits in the definition, and no
reason tq believe that all chaotic SD is exponentiall The distinction between exponential
and minimal SD is irrelevant, a false distinction, as far as chaos goes.

One advantage of the minimal, over the exponential, definition of SD is that it is easier to
carry out analytic proofs of its presence or absence in some systems, notably QM (quantum
mechanics) systems, in the former than in the latter. If minimal SD can be shown to be
absent, then there is no chaos in that system. Proofs that chaos is absent in a very
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large class of inte.esting obscrvables in QM will be given or indicated in this section or in
appendix B.

A very interesting and apparently open question (July 1990) is whether chaos defined this
way implies the other usually accepted “signatures of chaos.”

5.2 Sensitive Dependence

Let = be a point of phase space, or state, of the system. For flows and maps whose phase
space C RN, a state is the real N-tuple (1,22, +-2n). But the state need not be so
limited. For example, in QM z is the state vector ¢, sometimes written |¥), a “point”
in an co-dimensional complex vector space H. The essential thing is that there should
be a distance d(xy,z2) between any two states zj, zo, that is, state space can be any

L
metric space M. For RN we could take d(z1,22) = [lo1 — zo]| = [T N, (#1: — 22:)%] %, the
cuclidean metric. For QM state space H, where z1 = 1, Ty = 1

d(z1;22) = |1 — Yall, where ||4||* = (4]4), (5-1)

and (3)|¢) is the scalar product in Hilbert space H. We can continue to call ¢;(29) the
orbit in this general context.

The basic (minimal, irreducible) idea of sensitive dependence at state x € M is that there
exist states ' arbitrarily close to @ such that the z' eventually separate from z by at least
some fixed finite distance € independent of 2’ under time evolution. As emphasized in
section 5.1, this is it! We do not require exponentially fast separation of z(t) and z'(t).
Since this concept is so important, let us put it into a precise definition.

Def. The dynamics D with orbit function ¢; has sensitive

dependence on initial conditions at state x if there exists an

¢ > 0 such that, for any neighborhood N of 2 there exists

an 2' € M and a t > 0 such that d(¢:(z"), d«(z)) > e. (5 -2)

The set of all such z is called the Julia set J of the dynamics D. This concept is very old,
as nonlinear dynamics goes, going back to Julia and Fatou, who worked on the iteration
of complex analytic maps in France around 1920. It is clear that Def. (5-2) guarantees
the fixed error ¢ in the orbit through an z € J, as discussed qualitatively in section 5.1.

There arises a vexing question here. There may be functions F of the state 2 which are at
least as interesting as « itself. For QM, where the state z = 9, it is sufficient to mention
expectation values of Hermitian observables, the time correlation of (1) and P(t + 1),

etc. We could define SD for the observable F' simply by using (Z(F(qSt(:v’ ), F(¢e(z))) in

—

(5-2), where d is the distance in the metric space M of the function F: M — M. The
question arises: does the SD of the dynamical system D depend on the function, or map,
F in question? One can prove that it does not if F(z) is continuous (Ingraham, 1988).
Assuming continuous maps F' always, we restrict to the orbit itsclf in this report.

But now notice that the so-defined SD does not always imply what we want to mean by
“chaos ” A simple example: consider a free particle, moving on a stiaight line for simplicity.
The phase space has points 2 = (¢,v), v = ¢, and orbits £(t) = vt + &, v(t) = v = const.
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Take the euclidean norm d(z',z) = [({' -2+ (v -—4))2]%. Then it is clear that for any
initial point z = (€,v) and different point 2’ = (¢',v') with v' # v, we have

d($e(z"), pe(2)) 2 |v' = vlt.

Hence, no matter how close z' is to z, d > any given ¢ for some time ¢; if e = 1,d 2 1
fort =1/ Iv —v|. So the dynamics has SD at every point in phase space; every point
bglgr;gs to the Julia set. Similarly, many integrable systems show this “trivial SD” on
their unbounded orbits.

There is a very natural way to limit the SD (5-2) to ensure that it is equivalent to chaos.
lee all good definitions, it eschews technicalities and a hst of special cases; it achieves the
de51red concept at a single inspired stroke (Wiggins, 1990, hereafter abbreviated as W).
Flrst let us define SD for sets A with an e the same for all z € A. Second, let us require
that the set A be invariant and compact. “Invariant” we already know from Chap. 2
it means that A is carried into itself by the time-evolution, so that SD is not a transient
property. A compact meens that it is closed and bounded. Making all of this precise, we
end up with the definitions

Def. The dynamics D with orbit function ¢; has sensitive

dependence on the invariant compact set A if there exists an

¢ > 0 such that for any z € A and any neighborhood V of z

there exists an z' € A and a t > 0 such that d(¢,(z'), ¢:(z)) > e. (5-3)

There is another, independent feature of “chaotic” motion on a set A, namely that the set
be mixed up properly.

Def. For a dynamics D with orbit function ¢;, V is tepologically

transitive if, for any pair of open sets Uy, Uz C V, the image of U

under the dynamics intersects U, at some time: ¢,(Uy)NU; # O

for some time t > 0. (5—4)

Following Wiggins and Devaney (1986), we require both (5-3) and (5-4) for true chaos.

Def. The dynamics D is chaotic on an invariant, compact set A if D
has sensitive dependence and is topologically transitive on A. (5—3)

For convenience of expression we can also say that A is chaotic in the case (5-5). Thus we
have finally a precise definition of chaos in any dynamical system (and we can drop the
quotation marks in “chaos” when referring to this definition).

Sensitive dependence on sets (5-3) and chaos can be generalized to maps of the orbit or
“observables” as noted above. Again one gets the same SD and chaos with respect to the
map as with respect to the orbit itself if F': M — M is continuous.

Requiring SD on compact sets in phase space as in (5-3) for chaos rather than just pure
SD (5-2) excludes those cases of “trivial SD” from classification as chaos. For our free
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particle example above, the orbits are clearly unbounded, so could never be contained in
a compact set A.

5.2.1 Lyapunov Stability

It is interesting to get an expression of regular (non-sensitively dependent) motion by
negating the minimal definition (5-2) of SD. This reads

Def. The dynamics D is Lyapunov stable at state @ if, given ¢ > 0,
there exists a § > 0 such that if d(z', 2) < 6, then d(di(2"), di(2)) < €
for all £ > 0. (5—-6)

Cf. W, page 6, def. 1.1.1. In the old work on itcration of complex analytic maps F(z),
z € C, mentioned before, such a map F' was said to be normal at z. Def. (5-6) is the
nearest thing to continuity that we can define for whole orbits. Comparing (5-6) with the
previous definition of the stability of a fixed point in section 2.3, we see that the latter
is none other than Lyapunov stability specialized to the degencrate orbit z(t) = z* if we
define neighborhoods via the metric d in the usual way. So (5-6) is now seen as the logical
extension of (2-13a) to whole orbits.

5.2.2 Maximal Lyapunov Exponent

The Lyapunov exponents x1, 2, - xn for a map or a flow in R can be defined, but this
involves some tricky technicalities which don’t arise if N = 1 (De¢f. (3-11) for maps). See
GH (1983). So we shall skip that in this report and instead define the mazimal Lyapunov

ezponent x for our general phase space M = any metric space. Let the dynamics have the
orbit function ¢,.

o
!
-1
N’

_ 1
Def.  x(v) = Jim o 7 0 [[Dg(z)(=" — ) (

if this limit exists for all sufficiently small neighborhoods A (). D¢,(z) is the Jacobian
matrix of ¢, at @ for R or its generalization for more general phase spaces M such as
Hilbert space H for QM. In (5-7) the Jacobian matrix acts on the vector 2’ — x, and we
take the length || .- || of the resulting vector. Sup means least upper bound, here over
points 2’ in sufficiently small neighborhoods of 2. Thus we are varying the directions of
the small vectors on which the Jacobian matrix acts and taking the maximal vector length
so found. A numerical algorithin for computing x is given by Benettin et al. (1976).

A little reflection reveals that \(x) measures the maximal ratio of exponential divergence
of the orbit based at & from other infinitesimally near orbits. A(&) > 0 for an orbit will be
defined as ezponential SD. Now what we expect intuitively is x(2) £ 0if the orbit through
x is Lyapunov stable. I know of no formal proof of this, but it scems very plausible and
we shall aceept it here. So y(2) > 0 for some 2 implies the violation of Lyapunov stability

(5-4), so that its negation, minimal SD (5-2), is valid. Exponential SD is therefore just a
special case of minimal SD
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The motion in homoclinic and heteroclinic tangles has been studied carefully by mathe-
maticians (GH, 1983, Secs. 5.2, 5.3; W, 1990, Secs. 4.3, 4.4, 4.8) and proved to possess
SD on compact invariant sets A, (5-3). These sets A, called Cantor sets, are really weird
and intuition-defying. They are closed, totally disconnected, and perfect (every point is a
limit point). Sce the mathematical glossary in GH for these terms. In fact, the motion
is topologically cquivalent to a certain “shift map” on the space of bi-infinite sequences of
N symbols. This symbolic dynamics can be proved to be chaotic according to (5-5) (sec
W scction 4.2). However, to my knowledge, it is unknown whether this extremely chaotic
motion shows exponential SD

5.2.3 Sensitive Dependence and Chaos in Quantum Mechanics

The question of whether there is “chaos” in QM is one of intcnse interest at the present
moment (1990), hotly disputed, with claims and counterclaims compounding a confused
situation. Part of the trouble is, of course, the unsettled nature of the definition of chaos,
implicit in my use of quotation marks around this term in most of this report. However,
with chaos clearly defined as in (5-5), rigorous proofs that there is no chaos in many
important observables of QM can be constructed (Ingraham, 1988). We treat this topic
briefly in this section and give such a proof in appendix B.

Consider the self-correlation C(t,7) = (¥(2)[#(t + 7)) or the auto-correlation functional of
it

C(r)= hm -7-1/ C(t,7)dt. (5-38)

These have been computed numerically for simple model systems and plotted both in ¢ or
T space and, Fourier-transformed, as power spectra. Deccaying behavior in 7 and broad
band power spectra, “signatures of chaos,” have been scen (Milonni et al. 1987, section
52; Pomeau et al. 1986).

However, we can prove that there is no chaos (5-5) in these systems by showing that there
is no minimal SD (5-2) in these systems, that is, that they are Lyapunov stable at every
state ¢ € H. The proof can be done for any QM system - any dimension of H, forced
or not, etc. One way would be to show that C(¢,7) is a continuous function of the orbit
#i(x) = the state vector 1(2) in the Schrédinger Picture, in accordance with the thcorem
on observables F' mentioned above. For the state vector itself almost trivially has no SD
We show that it is Lyapunov stable.

Given the orbit 1)(t), let ¢'(t) be an orbit initially near the first one: [|$'(0) — (0)]| < §,

where ||+ || is the usual QM norm defined in (5-1). Let U(#,0) be the unitary time-
devclopment operator. Then at any time ¢

1'(2) = %Il = U, 0)(%'(0) ~ $(O)I| = [4'(0) ~ H(0)]| < 6 (5-9)

because U(t,0) is unitary, does not change the norm of any state, Q.E.D.

But it is probably easier to prove directly that C(¢,7) is Lyapunov stable. See appendix
B. From no SD for C(t,7), no SD for C(r) in 7 follows immediately.
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Another map of great importance is the expectation value

(0)8) = (bl g [H(0) (5 10)

of observable ¢ at time £. For example, the occupation probability of energy cigenstate ¢,
at time t, |(#n|¥())|?, is the expectation value (5-10) for operator ¢ = [@n){dn| = Py,,
the projection onto the state ¢,,. These have been plotted for model systems, both as time
serics and power spectra, in the literature, and have appeared “chaotic.” See, for example,
Milonni et al. (1987, section 52). However, it can be proved that (g)(t) for any QM system
and any bounded operator shows no SD and hence, no chaos.

Def. Operator g is bounded if ||qé|| < M||4||, all € H (56— 11)

for some constant M > 0. Since this proof is similar to the one for C(t,7), we leave it as
a problem for the reader.

Prob. 5.1. Prove that (g)(¢) has no SD for ¢ bounded. (Hint: see appendix B).

It begins to look as if one can prove analytically that there is no chaos in QM! But the
situation is not yet clear because of the existence of unbounded operators g in QM: (5-11)
not true, or equivalently, their spectra unbounded above or below or both. These can’t
be ignored: a few cxamples are position and momentum of frec particles or oscillators,
cnergies of n-clectron atoms, orbital angular momentum, etc. The role that unbounded
operators play in possible chaos in QM is an open question (July 1990).

5.3 Discrete Fourier Transform and Power Spectrum

Say we have a set of numbers zj, j = 0,1,2,:--N — 1, where N >> 1. They might be
obtained from sampling a flow at equally spaced times jAt over a time T' = NAt, or from

a map dynamics z; = FJ(z) over a large number N of iterations. Define the discrete
Fourier transform of this set by

N-1
A 1 —~2nij
.ksﬁzmje wigk/N - 1 =0,1,2,-.- N =1, (5-12)

i=0

&, corresponds to frequency v = k/T. The inverse is

=

z; = £re2™RIIN - 520,1,2,. N =1, (5-13)

-

=0
obtained via the “orthogonality relation”

N-1
Y et = NG, 0< kSN -1, (5 - 14)

n=0
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Eq. (5-14) is nothing but the statement that the Nth roots of unity form a closed regular
polygon in the complex plane. Then the discrete power spectrum Pp is defined

Pp(vi) = |3%, k=0,1,2,---N —1. (5 - 15)

If we want to study a slice of a dynamics (typically in the asymptotic regime) by the diserete
Fourier transform, we choose T and At such that the important system frequencies are
contained in the interval (1/T,(N - 1)/T) =~ (1/T,1/At). Incidentally, the fast Fourier
transform, or FFT (sce Bergé et al. 1984, section II1.4), greatly shortens the numerical
cvaluation of (5-12).

Several features that distinguish the discrete Fourier transform and its power spectrum
from the usual (continuous) Fourier transform and its power spectrum should be noted.

a. If the set {z;} is a slice of a stable periodic orbit of period 7 << T, then the
discrete power spectrum Pp(vy) has peaks at all harmonics of the fundamental frequency
1/7 less than vyax = 1/At. For example, for a stable n-cycle of a map, Pp has peaks at
the harmonics m/n, 0 < m < n — 1, of the fundamental frequency 1/n. This is a direct
reflection of the fact that the Fourier series of a process restricted to tine interval (0, 7)
or of a process periodic with period 7 has nonzero Fourier amplitudes in general at all
harmonics of the fundamental frequency 1/7.

b. The peaks in Pp(vi) at the dominant frequencies are finitely high and hroad
and arc asymmetrical. The power spectrum does not vanish between these peaks. It is
symmetric around vyax/2.

¢.  Contrast the behavior of the discrete power spectrum Pp and of the usual
continuous power spectrum P developed for stationary ergodic random processes (Reif,
1965, Sccs. 15.13 - 16.15). For the quasi-periodic motion (4-16), P(~) is a sum of delta
functions at the frequencies +v;, ¢ = 1,2,.--n. These are infinitely high and infinitely
narrow peaks, and P(v) = 0 clsewhere. Pp(v), on the other hand, is pcaked not only at
the v; but also at all their harmonics in the sense of remark (a). These peaks are finitely
high and broad, in accordance with remark (b). Call these spikes.

The discrete power spectrum is a valuable tool in nonlinear dynamics. Regular motion
shows up as spikes. A broad band power spectrum Pp(r)), a more-or-less continuous
background with a few spikes over it, is accepted as a “signature of chaos.”

Further, a discrete self-correlation

N-=-1
1
Cp(m) = v Z TiTj4m (5 - 16)

j=0

can be defined. Cp(m) decaying in m corresponds to a broad band power spectrum.

. Prob. 5.2 Compute the discrete power spectrum for the logistic map (3-9) and
display it on a graph for the values of p given in Prob. 3.1. Note the different behavior
for 1 < jteo and gt > pico, oo ~ 3.5699 - ..
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5.4 Algorithmic Complexity, Kolmogorov Entropy, Etc.

There are other measures of “chaos,” which we shall treat much more briefly than the
preceding ones in this section. The interested reader can pursue these topics, lightly
touched on here, by going to the cited literature.

5.4.1 Algorithmic Complexity

This is a measure of the randomness of the orbits of a dynamics. See Alekseev and
Yacobson (1981) for details and proofs. Some workers, especially Joseph Ford and his
collaborators, equate randomness with chaos. An informal sketch follows.

A finite word sy is a string of N letters from some alphabet L, for example £ =
{1,2,.--m}. A special case is £ = {0,1}, the binary alphabet. Then

Def. The algorithmic complezity K(sn) of the finite word sy is the
length (number of symbols) of the shortest algorithm which will :
print the word. (6 -17)

This definition depends (apparently) on the Turing machine, the algorithm, but can be
made machine-independent. Algorithms are also called “programs,” “recursive relations,”
or “rules.,” We have 1 < K(sy) < N in any case. If, for large N, K(sy) is not appreciably
shorter than N itself: K(sy) = O(N) as N — oo, the word is called random.

Define the algorithmic complezity (AC for short hereafter) of an infinite word s as
K(3e0) = A}im K(sn)/N, (5 -18)

where sy is the first N letters of se. Then if K(seo) > 0, the infinite word is called
random.

Next, consider a map dynamics F' : X — X, where the phase space X may be quite
general. X is partitioned into a finite number of disjoint sets {Ey,E,--- E;} = € (a
coarse graining of X'). Then the actual orbit F*(z), n > 0, is replaced by its itinerary: the
infinite word wy,ws,ws,+++ according as the nth point falls into set E,, : F*(z) € E,,.
We then define the AC of this infinite word as'in (5-17)! Since the itinerary depends on
the initial point z, the partition £, and the map F, denote this AC by K(z, F|£).

K(z,FI€) = lim K(@n)/N, (5 —19)

where wy is the finite m-ary sequence wy,ws, - wy. Now let K(z, F) be the least upper

bound (or sup) of (5-18) over all partitions £. Then we say that the orbit based at z is
random if K(z,F) > 0.

We can see the motivating idea behind this formalism. If the orbit is really “random” in
the intuitive sense, there is no short algorithm available to print it out. We must simply
numerically calculate the whole orbit. This makes K(xz, F) > 0.
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5.4.2 Kolmogorov and Other Entropies

This is an. idea closely related to algorithmic complexity, whose aim is to quantify
randomness in a dynamics. Again one works with maps F' on very general spaces. The
entropy h(F') measures the uncertainty in predicting the (N + 1)th point of an itinerary,
given the first N points, for N >> 1. Again one uses a partition £ of phase space, and
replaces an orbit by the labels of the coarse-graining sets that it visits. Kolmagorov (or
metric) entropy uses measure theory and a generic orbit. The Zopolagical eniropyis defined
slightly differently, following individual orbits of F. See Alckseev and Yacobson (1981)
and Young (1983). The upshot is that the dynamics is called random or unpredictable if
the entropy h(F) > 0.

To my knowledge, the precise interrelationships of sensitive dependence, algorithimic
complexity, and the various entropies have never been clarifiecd. There are scattered cross-
connections like the Pesin formula, (see Young, 1983, p. 604). The ideas of unpredictability,
randomness, and chaos certainly overlap; they cannot be independent. For instance, one
could ask: does a dynamics which shows SD in the minimal sense (5-2) necessarily have
positive algorithmic complexity and entropy? My conjecture is “Yes.”
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6. RENORMALIZATION GROUP

6.1 Introduction

There are phenomena in mathematics, physics, and other sciences which occur repetitively
on all length scales. The geometry of such invariant limit sets is called self-similar
(precisely, the part is topologically equivalent to the whole under a scale change z — az,
a = const.). We already saw an example of this in the period-doubling process in the
logistic map (section 3.10.2). An all-important example is the phenomenon of phase
transitions in condensed matter. At the critical point the intcractions are self-similar
under arbitrary changes of scale (“coarse-grainings”) because the corrclation length is
strictly infinite at the critical point. The clearest explanation of this in nontechnical
language that I know is Bruce and Wallace (1989). This directly leads to an algorithm for
computing the famous critical exponents of thermodynamics, for example, the exponent o
in the heat capacity C near the critical temperature T,

Cx|T-T|™™ for|T — T¢|small, (6-1)

which has a typical value o & 0.125.

This algorithm, known as the renormalization group (RG), exploits the self-similarity by
defining a transformation, or map, R of coupling constants. If R is iterated, the system
is taken into the asymptotic, noncritical regime of weak coupling constants, where known
analytic results or perturbation theory give reliable results. Itcrating backward, we recover
desired thermodynamic variables such as a free energy in the realistic coupling range. The
RG can thus in principle deliver exact results inaccessible to perturbation theory. The
system at the critical point z, itself is not changed under the iteration because of the
self-similarity there: R(zc) = ¢, that is, z. is a fized point of the RG coupling constant
map R. This ties phase transitions to nonlinear dynamics, its concepts and its techniques.
In particular, linear stability analysis at 2* = z gives the critical exponents. For a simple
treatment of the mathematics, see Maris and Kadanoff (1978) or Chandler (1987, Secs.

5.6, 5.7); for the more advanced and complete theory (see Plischke and Bergersen, 1989,
chap. 6).

6.2 RG for Ising Lattices

Ising lattices are first of all lattices: regular nD repeating patterns of discrete points.
Second, there are spins s;, i = 1,2,3,--- N, at the N lattice sites, each having only two
values “up” or “down”: s; = %1, all i. A particular configuration {s1,82, - sn} = v,
where each s; = +1 or —1, is a (microscopic) state of the system. Thus there are 2V states.
The energy is due to interactions between nearest neighbor spins in the lattice; the spins
can also interact with an external magnetic field H via their magnetic moments . Thus
we can write for the energy E, of the state v

'
E,,=—JZ s,'sJ'—-,uHZS,' , (6-2)
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where the prime on E restricts the sum to nearest neighbor pairs. J > 0 corresponds-to a
model of a ferromagnet, but Ising lattices model very many systems, even “lattice gases,”
under a slight reinterpretation.

The basic problem in equilibrium statistical mechanics is to evaluate the partition function
Z,
ZEZe‘ﬂEV,ﬂEI/kT, (6-3)
v

where T = absolute temperature and k = Boltzmann's constant. The sum is over all states
v. (The grand partition function will not enter here.) From Z the entire thermodynainics
follows!

For dimension n =1 (6-2) can be written

N N
E, = —-JZsisH.l - uHZ Si (sN+1 = 81)y (6 ~4)
i=1 =1

where for convenience the 1D lattice (“chain”) was closed by imposing periodic boundary
conditions. Then

Z(K,h,N) = Z exp(Ks;isiy1 + hsi), (6 —5)
{s:}

where K = 8J, h = BuH, and the sum is over all 2V states {s;}. The sum can actually
be done in closed form (!) (see Plischke and Bergersen, 1989, section 3.F).

Prob. 6.1 Evaluate (6-5). This is mainly to get you thinking about such large sums
and to see how nontrivial even the simple-looking sum in (6-5) is! For the transfer matrix
method, see Plischke and Bergersen, or Chandler (1987, Ex. 5.21).

For h = 0 the answer is especially simple,
Z(K,N) = (2cosh K) (6 —6)

(A clarification: this is the answer in the so-called thermodynamic limit N — oo, that
is, the leading term.) Then it turns out that the 1D Ising lattice has no (proper) phase

transition: the order parameter m = (s;), any 7, the mean value of the spin for h = 0,
stays zero for all T > 0.

6.2.1 1D Ising Lattice by the RG

Now we wish to derive (6-6) by a recursive scheme, the RG, and verify that there is no
phase transition. We follow Maris and Kadanoff (1978) and Chandler (1987).

Write out the sum (6-5) with h = 0 and group the factors in a certain way:

Z(K,N) = Z exp[K(s182 + s283 + s3s4 +- )]

91,382,383,
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= Z exp K(s152 + s253)exp K{(s3s4 + s455)---.

31:52,93,"

Sum first over even-numbered spins 2, 4, 6, ---.

Z(K,N)= ) {expK(s1+s3)+exp(—K)(s1 +s3)}x

31:93,95,"""

{exp K(s3 -+~ 55) + exp(—K)(s3 +55)} x ---. 6-7)

Every other degree of freedom has been removed; the spins have been “thinned out™ (see
Fig. 6.1).

O
wo
no

Fig. 6.1 “Thinned out” Ising chain (see text)

Now we try to make (6-7) look like the original sum for N/2 lattice sites with a possibly
different coupling constant K'. If this is possible, a recursion relation can be developd.

So set , . .
HHe) 4 KOt = f(K)eK'' | all s, = 1. (6-8)

If this were possible, then from (6-7) and (6-8) we would get
Z(K,N) — Z f(K)eK""‘” X f(K)eK'sass e
31:93,385,°"*
= [f(K)V?2(K', N/2), (6-9)

with the same function Z! Returning to (6-8), we see that there are only two different
cor: litions:

s = sl =41 , 32K+8_2K =f(I{)e[\'l,
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s=—s'=41 , 2=f(K)e¥. (6 - 10)

These can be solved, and we get

et

K'=-Incosh2K , f(K)=2(cosh2K)'/%. (A)

l\')

Now by extensivity we can set In Z(K,N) = Ng(K). Since the (Helmholtz) free energy
G = —kTInZ in general, we see that ¢ = —f G/N, apart from the factor —f the free
energy per spin. We call g “the free energy” from now on. The natural loganthm of (6-9)
can then be rewritten g(K) = (1/2)In f(K) + (1/2)9(K’), or, with (A), as

g(K') = 2g(K) — Inf2(cosh 2K)/?]. (B)

Equations (A) and (B) are called the RG equations of the 1D Ising lattice. By noting
F(K) = 2exp K' from (A), the inverse transformation can be written

K= %cosh"l(ez"") , ©)

oK) = ~-g(K') + —ln2+ I— . (D)

We note immediately that K’ < K always.
The first application we leave as a problem.

Prob. 6.2 Apply (C) and (D) starting with small K’ and iterate to get g(I) for
“rcalistic” values of K = 2.7. Take say K’ = 0.01, for which you can use Z(K',N) =
Z(0,N) =2V from the exact result (6-6), and thus g(X') ~ In2. Compare g(Ii) at each
step with the exact value derived from (6-6). Notice how fast the iteration converges to
the exact values.

On the other hand, we could start with large I, taking Z(I{, N) ~ ¢V and ¢(X) ~ K

from (6-8), and itcrate (A) and (B) to try to calculate g for medium K. But this does not
wark, the errors grow exponentially!

Sccond application. Examine the “flow” (used here for a map orbit) of the coupling
constant under (A) and (C). See Fig. 6.2.

K* = 0,00 are the only fixed points of (A) or its inverse (C). Point 0 is stable, point oo is
unstable under the map (A): X' = R(K) = (1/2)In cosh2K, 7= you can check. What this
means physically is as follows: on thinning out the spins (gomg to a larger length scale =
lattice spacing), we go to a system with a weaker coupling constant i’ < I. This is the
meaning of the flow in Fig. 6.2. Only the points KX = 0 and oo are independent of this
change of scale since K* = 0 (T = 00) is a completely disordered, K* = oo (T = 0), a
complctcly ordered, regime. A proper phase transformation would correspond to a finite
* (£ 0 or 00) also independent of a change of scale, thus a fixed point I'* of R # 0 or oo.
Tnc absence of such a finite fixed poin? in addition to the trivial fized points K* = 0,00 of
the map I means that the Ising chain shows no phase transition.
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o < < < o (A)

a o0 K—>

o— > > > J )
e = stable
o = unstable

Fig. 6.2 Phase portraits for the 1D maps A and C, showing stable and unstable fixed
points

One can define a correlation length ¢ by
(s1s;)=e79/€ | j=1,2,---N. (6 —11)

The exact Ising chain theory gives £ = —(Intanh K)™. Thus { = 0 at K* = 0 and
£ = 400 at '* = 0o, so the system is completely uncorrelated at T = co and perfectly
correlated at T' = 0. This makes physical sense.

N.B. ¢ = oo is taken as the definition of critical point. In this sense the Ising chain is
sometimes said to have a phase transition at T, = 0.

6.2.2 2D Ising Lattice by the RG

For n = 2 we get, for h =0,

Z =) explK Zl sisl, (6 —12)
{si)

where K = fJ again and the spins are now at the sites of a 2D square lattice, lct us
say. Alrcady the evaluation of the sum (6-12) is so horrendously difficult that its exact
cvaluation in 1944 made L. Onsager famous. The solution answered many deep and
worrisome questions. Chief result: there is a phase transition at critical temperature
Be = 1/kT, = .44069/J. Further, a whole set of physically rcasonable thermodynamical
critical exponents was obtained. See Plischke and Bergersen (1989, section 5.A) for details.

71




Now we try to apply the RG mietliod to (6-12). We proceed just as in section 6.2:1; so e
can b briefer. Writé out (6-12) and group the factors into sets each of which contairis just

oneé spm from every other diagonal, spins -+-5,6,--- (see Fig. 6.3). Then sum over spins
.<5,6,-

Z(K;N) = z explICss(s1 + 52 + 83 + 84)] exp[K s6(s2 + 83 + 57+ 58)] - -

31,32,93,°""
= z {exp[K(s1 + s2 + 83 + 84)) + exp{(—K)(s1 + 83 + 53 + 54)]} ¥
femaiking s;
{exp[K (35 + 83 + 87 + 38)] + exp[(—=K)(s2 + 83 + 57 + 88)]} X ++- (6 —13)

But how we cannot set the first factor {---} in (6-13) equal to f(I&)exp[K (5182 + s283 +
8384 + 848i )] (that 1 1s, neirest neighbors in the thinned out lattice) for all s; = £1, ¢ =
1,2, 3,4, since this gives four independent equations, and we have dhly f(X) and K " to
choose So we impose

exp[K(si + s2 + 83 + 84)] + exp[(—K)(s1 + 82 + 83 + 84))

» 1 ,
= f(I{) eXp[EIﬁ Ss;sg + 8283 iﬁ&; ,+ 8481‘)‘-{-](2 (8183 + 3284) + Iy 81828384|, (6 - 14)

nn nnn square

where we have labeled the terms nn for nearest nelghbors, nnn for next nearest neighbors,
anid square for the four spins around a square in the coarse-grained lattice, see Fig, 6.3.
Then the four independent possibilities: all s; equal, threc s; cqual and one unequal,
51 = 89 = —83 = —s4, and 57 = —s9 = 83 = —34, (1 = 1,2,3,4) give the four cquations

exp 4K + exp(—4K) = f(I)exp(2K; + 213 + K3);
exp 2K + exp(—2K) = f(X)exp(—I3),
2 = f(K)exp(—2IK, + K3),

2 = f(.K) exp(-—2K1 + 2K, + I(g). (6 - 15)
The solution is

1 B
Ki = Incoshdk, I = -;—ln coshdK, K= %m cosh 4K — I cosh 2K,

F(K) = 2(cosh 2K ) ¥ (cosh4K)3. (6 — 16)

Now substitute (6-14) for each factor {---} of (6-13). A factor f(I)N/? comes outside.

Notice each nn pair appears twice, while each nnn pair and sct of four spins in a square
appears once. Hence

ZE,N) =[N Y explly Y sisi + 12 Y stsm+ K S spsqsesi].

N/2 spins
(6—17)
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? 6 3 > 7 3
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8 4 g
o o /o/ ° o o

Fig. 6.3 “Thinncd out” 2D square Ising lattice

. . ", . n. :
Sum ¥ is over all nn pairs, sum 3" is over all nnn pairs, sum Y is over all sets of four
spins in a square in the coarse-grained lattice.

The moral is this: due to the greater connectivity of the 2D lattice, thinning out the spins
by summing those on every other diagonal results in a more complicated interaction (6-17)
than the original one (6-12). This happens generally in all dimensions > 1. Thus an exact
RG calculation of Z fails.

One can try several approximations to salvage the method.

1) Neglect Ky, I3 entirely. Then
2(K,N) ~ [fEON 2(K, NJ2) | Ky = %m cosh 4. (6~ 18)

But this is equivalent to the 1D RG analysis (just set 2K = K, 2k, = K, Z(K,N) =

Z(K,N), and compare (6-18) with (6-9) and (A) written with tildes on K, K’, and Z.)
Hence there is no phase transition. Approximation (1) is too rough.

2) Neglect I3 and approximate

Y sisi 410 Y sism 2 KKy, K) Y sis; (6 - 19)

for some K'(I;,K>). This gives (6-18) with this &' substituted for ;. Introduce the
free energy g(IV) as before; then the In of this last equation gives

9(K") = 29(K) — In{2[cosh 2K}z [cosh 4] ]# }, (B)
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where the last equation of (6-16) was used to substitute for f(I). Now: (6-19) cannot, of
course, be satisfied for all spin values. We want to estimate K* by satisfying it when all
spins arc aligned. Since there are N nn and nnn pairs in a 2D square lattice of N/2 sites,
we have in the aligned case

K, zl sisj = NK, , I Z" sism =Nk, ,

thus Ky 4+ K3 = K’ from (6-19). Then from (6-16),
rl 3 4
K'= 3 In cosh 4K (4)

To summarize; (A) and (B) are our approximate RG equations for the 2D Ising lattice.
The inverses can be written down, but we skip them.

Now the map (A) has trivial fixed points at K* = 0, 0o as before. But it has the nontrivial
fixed point K* = K,

K, = g—ln cosh 4K, = K, ~ 0.50698. (6 — 20)

But now I'™* = 0 and oo are stable, while K, is unstable. Sece the phase portrait of the
“flow” in Fig. 6.4.

\'4
/

N A
ooK'E()

e = stable

o = unstable

Fig. 6.4 Phase portrait of the 1D map 4, showing the trivial stable fixed points and the
nontrivial unstable critical fixed point

‘The physical meaning of this parallels the discussion at the end of section 6.2.1. Going to
a larger length scale now drives systems with coupling weaker than K to the completely
disordered regime I* = 0, but systems with coupling stronger than K, are driven to the
completely ordered regime K* = co. But systems with K = K, exactly are independent
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of a change of scale, have correlation length £ = oo, and correspond to a proper phase
transition. According to (6-20), this critical temperature T is given by

J kT, ~ 0.50698 ; (6 — 21)

compare the exact value 0.44069 from Onsager’s solution.

Finally let us see how critical exponents are predicted on the RG approach. We assume
that the free energy g(I) has a nonanalytic part which & a(K — K:)*~* near K.. Then
from (B) above and

K' - K.~ (dK'JdK)| (K = K.)
K.

we get

] 2~
a(%) (K = Kc)>~* =2a(K — Kc)*™* + termsregularat K = K,. (6 —22)
dK

where dI\'/dI{ is understood to be evaluated at K.. But it follows from the theory of
analytic functions that the nonanalytic terms in (6-22) must be equal. Cancel a (assuming
a # 0) and the factor (K — I(;)?~, take In, and get

(2-a)lndK'/dK =1n2 = o = 2 — In2/In(dK’ /dI) ~ 0.131. (6 — 23)

dK'/dK from (A) was evaluated at I, from (6-20). This « is in fact the heat capacity
critical exponent (6-1) since the relation of C' to g(X) can be checked to be

C/N = kK? d?g(K)/dK?

which makes C' ~ |K — K¢|~® ~ |T — T|~* near K.. Further, this is a continuous, or
second order phase transition, since g, dg/dK, but not d®g/d? arc continuous at I = I{,.

6.3 RG Applied to Period-Doubling
We treat the 1D quadratic map with parameter A,

Fa=a®+4r , -2<A4A<1, (6 — 29)
which maps the interval [—1,1 — A] into itself. This map is topologically equivalent to the
logistic map (3-9) by a linear change of variable. There are two fixed points 2* = 0, —A.

In -1 < A <1 both are stable (remember, “stable” will mean asymptotically stable in
this section). At A = —1 both go unstable, and the stable fixed points

=34+ D% VAT A=Y (6 = 30)
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of F? are born. These form a stable 2-cycle of F. Consider the orbit based at Tt +u,u

small. Then ' ‘ \ ’ _

21 = F(z} +u) =22 + Ay, Azy = (A + 220 )u +u?, (6 —31)

where we simply expanded (6-29) out and used F(z}) = z*. Iterating again, we get
obviously

Tg = F(z* + Azy) = z} + Azg, Azy = (A + 22%)Az; + (Azy)?, (6 - 32)

where we tsed (6-31) and F(z*) = z%. Now substitute Az; from (6-31) ifito Azy from
(6-32); and keep only terms of O(u?). By expanding out, this becomes

Awy ~ (A +227)(4 + 223 Ju + [A 4 22% + (A + 222 )*Ju?, (6 —33)
This looks something like the original map (6-29); by rescaling
' =ou , zh = oAz, a=A+2z +(A+233)3, (6—34)
(6-33) takes the form & = F,,(z'), where
w(a)=a?+ A, A= (A4 2 ) (A + 203) = ~A* + 24 + 4. (6 - 35)

We vised o}, from (6-30). But FY,, is the same function which occurred in the original map
(6-29) for a transformed parameter

A'=RA)=-A*+24 +4. (6 — 36)

Thereby we have aclieved an RG transformation for period-doubling in quadratic maps.
This guarantees the sclf-similarity noted in section 3.10.2, the period-doublihg cascade.

An important fine point: the map (6-35) is not the same as the map (6-29) since different

regions are mapped, cf. (6-34) and u = ¢ — z3. That is, F' is not the same map as F;
rather, they are topologically equivalent !

Now we can draw various conclusions. The fixed points &} of F3 are the same states
as the fixed points 0, —A’ of F},. Thus 23 are stable in the range -1 < A' < 1, or
1-v6 < A< -1 from (6-36). At A =1— /6~ —1.4495 they lose stability, and two
stable fixed points of F'? are born, that is, a stable 4-cycle of F. Thus the RG method

can approximate the period-doubling bifurcation values which we called fn, n 2 3, for the
logistic map in section 3.10. /

We can continue this way, defining period-doubling bifurcation values A, with 4; = 1-/.

In the limit n — oo, 4, — a limit A,. Solving Ae = —A2, + 200 + 4 from (6-36), we
get

A = %(1 —V17) ~ -1.5616 . (6 - 37)

Prob. 6.3 Find the linear transformation connecting map (6-29) with the logistic

map. Thus translate the values 4; and Ao found here into values of #t, and compare with
3 and pieo found in section 3.10.
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If we assume that the convergence of A, is asymptotically geometric: A, = Ao +C67"
(6 > 1), we get the same 6 found before, (3-10). This is no accident; one can prove easily
that if we have a new parameter A = g(u), g differentiable, then §, defined by (3-10) with
g — g(p) is exactly the same: &, = 6. Further, the scaling parameter « defined in (6-34)
should also be asymptotically universal (check by putting 2% from (6-30) and A = 4.
into this formula). The “cxact” value found for the logistic map is o & —2.5029078 - - -.

6.4 RG Applied to the Tangent Bifurcation
Tangent bifurcations were described in section 3.10.3. We want now to calculate the time
of transit, the time that the orbit point stays in the “neck” in Fig. 3.9, by RG methods.
Iterate the map G, and, in keeping with the spirit of the model, keep only terms of O(z?)
and O(y).

G(z)=p+(p+z—2a®) - (p+z—2') m2u+a—20" (6 — 38)
But 1

-2-G'4,,(2a:) =2u+z -2z |
the same as (6-38), so
1
Gi(z) = §G4,,(2:1:). (6 — 39)

This is exactly the statement that the map G% is topologically equivalent to the map Gy,

in the region X : z and p small via the homeomorphism h(z) = 2z, cf. (3-7).

Hence if we define: N () steps are necessary for the orbit point of G, to pass through the
neck, we have

N(w)/2=N#n) (6 - 40)
since the transit time is only half as long for G% as for G, This functional equation has
the solution

N(p)=C/\/-p, C = const. (p<0), (6 — 41)

which is the desired answer.
6.5 RG Applied to Percolation

Percolation theory has evolved considerably since its humble beginnings as the study of the
percolation of fluids through porous solids. For some basics, sce Plischke and Bergersen
(1989, pp. 317, 318). The notions we nced are the following: there is a lattice, say 2D,
with site occupation probability p. At p = p., the critical probability, the infinite cluster
just forms. At this point the configuration: the lattice with occupicd and unoccupied sites
marked ¢ and o respectively, should be self-similar, that is, be invariant under an arbitrary
change of scale © - az, (see section 6.1).

We take a triangular lattice with some occupation probability p and coarse-grain it by
dividing it into blocks of three sites. These block sites will be said to be occupied or not by
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the majority rule: occupied if the number of #’s is three or two, unoccupied if this number
is oue or zero. Sce Fig. 6.5.

e = occupied

o = unoccupied

ZEL :ii:ﬁéjl . .k/é;°
AT LT,
AA :

Fig.A 6.5 Coarse;grained triangular percolation lattice

The block sites are put at the centers of the orlgmal equilateral triangles. Therefore the
scale (def. lattice spacing) has been increased in the ratio 1: v/3 (sce Fig. 6.5).

If p' is the block site occupation probability, we have
P'=Rzp)=p’ +3p*(1-p) . (6~ 42)

Ex. 6.1 Verify (6-42). This is a simple exercise in using the laws of probability.

The RG map (6-42) has fixed points p* = 0,1, and 1/2. The first two are trivial fixed
points. We identify p with the third, p. = 1/2, for the reasons given just above. The
“flow™ under itcration of the RG map (6-42) could be investigated as before, but we are
more concerncd here with calculating a critical exponent.

We assume that the correlation length é(p) has behavior

£(p) < |p— pc|™ (6 — 43)

with critical exponent v near the critical point. The aim is to calculate v using the
RG method. Now we have increased the scale by a factor a > 1 by the coarse-graining
operation, so have decreased the correlation length by the same factor, £'(p') = f(p)/oz
See Bruce and Wallace (1989) for a clear explanation of this. But since the system is
invariant at p = p, the same law (6-43) holds for the rescaled lattice,

£ |p' —pl™ . (6 —44)
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Hence |p — pe|™/a = |p' — p|™?, or

P —pe=a"(p—pc;) . (6 —45)
Now write
P = pe+(dp'/dp)| (p—pc)=1/2+3/2p-1/2).
Pe

Compare this with (6-45); we get al/¥ = (v/3)1/¥ = 3/2, since o = /3 goes with the RG
map (6-42). Solve:

v=Inv3/In3/2~ 135 . (6 — 46)

More rigorous methods give v = 4/3, so the RG result is not bad.




7. PARTIAL DIFFERENTIAL EQUATIONS
7.1 General Reiriarks

Pde dynamics is the most difficult we have yet met in this survey. Orne miist solve
differential equations in several mdependent variables z € R and in time ¢ for fields
®(z,t) defined at all paints of some region U of ®™ and some range of times. Thus there
are an infinite number of degrees of freedom as opposed to the finite-ditmensional phase
spaces of flows, sets of N ode’s. (“Pde” and “ode” for partial and ofdinary dlfferentlal
equations, respectively, are abbreviations common in the literature, aid we shall use thein. )
Add to this the fact that there are different species of pde’s (elhptlc, hyperbohc, etc.), each
with its own kind of ifiitial and boundary conditions in order to be well-posed, while there
is only one kind of ode. If the computer is turned loose on a badly posed pde, it prints
out reams of nonsense.

Different ways of circtimventing these difficulties in pde dynamics have been dewsed since
the briite force method of simply integrating them from initial and boundary condltlons
as specified in existence theorems is usually 1mpractlcable, even for the largest compiiters.
Solvitig pde’s in physics is as much an art as a science; it takes experierice and good intiiton
to captiire the essential features of a rigorous solution while neglecting a vast number of
inessential details. We will not discuss all of these ways here but focus on one method only,
the Galerkin method, which is particularly well-suited to reVeahng those features of a pde
dynamiics in which noiilinear dynamics (“chaos theory”) is interested. It in fact converts
the pde dynamics into a finite-dimensional flow, about which we know quite a lot (Chap.

2).
7.2 Convection Equations

A typical phenomenon of interest is convection in an incompressible, viscous fluid. The
basic equations are the Navier-Stokes equations of hydrodynamics and an energy, or heat,

equation. In the Boussinesq approximation and in nondimensionalized form the equations
read

av/at+l(v-V)v=-vp+ Av + RT# (7 —1a)
P%—f+v VI=AT+1i: v, (7-1b)
V.v=0, (7 - 1c)

Boundary conditions. For example with solid walls:

v=0, T=0, aconditionon %Tr—z- (on the walls). (7 — 1d)

Here v = fluid velocity, T = absolute temperature, p = pressure, A = V? is the Laplacian.
The stationary or quiescent solution of the original convection equations is simply

vo=0,VIj =-A4i, A>0 const., (7-2)
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which describes a zero velocity field and a uniform vertical temperature gradient. i is
a unit vector in the direction of the uniform gravitational field g. The inhomogeneous
boundary conditions of those original equations for v,,, and Ti, specify velocity or its
derivatives and temperature or its derivatives on the boundaries in physical 3-space 3.
Having found the quiescent solution (7-2), one writes pde’s for the ezcesses v and T,
defined by

Viot = Vo +V(= V) 3 Ttog ETO+T.

Since Tp and vy satisfy the same boundary conditions as T and v, the exzcesses
satisfy homogeneous b.c.’s as in (7-1d), very important for the applicability of the Galerkin
method. Let “b.c.’s” be short for “boundary conditions” hereafter; it will save a lot of
space. Homogeneous b.c.’s mean linear b.c.’s: if fields ¢; and ¢, satisfy the b.c.’s, then so
does any linear combination a¢; + bds. The excesses and the coordinates are then made
dimensionless by dividing them by available dimensional constants (beware, this can be
done in several ways!) so that the only residue of the dimensional physical constants of the
original convection equations left in the equations (7-1) are a few dimensionless constants,

R=gBAL'/vx = Rayleighnumber, P =v/xy = Prandtl number. (7-13)
The reader can refer to any number of good books or articles for this Boussinesq reduction
and for the definition of the various physical constants occurring. We follow here Gershuni
and Zhukovitskii (1976), hercafter GZ. We will only name them here: 8 = cocfficient of
thermal expansion, x = thermal diffusivity, » = coefficient of kinematic viscosity, L =

characteristic length. 11, 4, and g have already been defined.

7.3 The Rayleigh Problem

If we assume 2D motion in a plane horizontal layer with z pointing up: no y-dependence
and vy = 0, equations (7-1) simplify. For a stream function ¥(z, z) exists:

v, =00[0z =1y, v, =-0¢/0z= —1p,, (7-4)

which satisfies V- v = 0 identically. (From now on we often use a subscript 2 or z to mean
0/0x or 0/0z.) Now if we take the zz curl of (7-1a), the Vp term is eliminated. Note that

(?vx/az —- avz/aa: = —'l,bzz - ¢xz = —'A'ﬂ‘[’ )

where A; is the 2D Laplacian. The nonlinear terms in (7-1a) and (7-1b) hecome Jacobian
determinants, defined for functions f and ¢ of z and 2 as

We then get, where f = 9f/0¢,

/ 10 ¢>A27/)
Aot = A% + RT, + TJ_(a_(ZaT)_)’ (7 - 5a)
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bels:p =1, =T=0 at 2=0,1. (all z,all 2). (7 - §c)

Here the homogeneous b.c.’s (7-5¢) came from the Ragyleigh problem b.c.’s: the upper and
lower plane boundarices of the layer are free surfaces (no tangential fluid stresses), that is,

v, =0, Ov;[/0z=0vy/0z=0

on those surfaces, Also L was chosen to be the height of the layer, so that dimensionless
z = 0,1 defines.those surfaces.

7.4 The Galerkin Method
Equations (7-5) are close to a standard form for nonlinear pde’s, which we take as
=A%+ F(®), L(®)=0. (7-6)

Here ®(z,t), = € R", is the field or set of p fields in question, thus ® € RP. A isa
linear operator and F, a nonlinear operator on ¢ usually involving partial derivatives with
respect to z. L(®) = 0 is the set of homogeneous boundary conditions and possibly linear
pde’s not involving 8/0¢, like (7-1c) for example. We shall call £(®) = 0 “the b.c.’s” for
short. Now an important concept:

Def. Let H be the linear (or vector) space of all p-component spatial
functions ¢(z) € R?, & € R*, which satisfy £(¢) = 0. (7-17)

(Remember how gencral a concept “vector space” is: any sct of objects closed under
taking linear combinations!) Any such ¢(z) is called a Galerkin vector. For example, in
the Rayleigh system (7-5) any Galerkin vector has the form

P(x,2) = (;68:3) € R?; 4 and T satisfy (7 — 5c¢). (7-38)

We assume that H is snvarient under A and F, A : H — H, F : 4 — H. The last
requirement is highly nontrivial.

But we can immediately write down a complete set or basis {dnr} of Galerkin modes
satisfying (7-8):

Ynk =sinnwz sinkz, Ty =sinnwz coshe

n=123,. , 0<k<oo (7-9)

The basis {#ni} spans the infinite-dimensional vector space H. (One advantage of the
Rayleigh b.c.’s (7-5¢) is that the Galerkin modes (7-9) take such a simple form. For
one free surface and one solid wall or for two solid walls, or for more generally shaped

boundarics and any b.c.’s, one cannot in general express the Galerkin basis in terms of
finite expressions in elementary functions.)
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For the gencral system (7-6) let {3,(z) | all a} be a Galerkin basis for scme infinite mdex
set of labels a. Then any solution of {7-6) has the form

3(z,0)= Y colt)ba(2) S @-)

for some functiors «,{i. .f time oniy. Here and below )}, may have to be interprcted
a~ 22 iutegral [ Ja if the labels a are continuous. - 7 invariant under F, in other words,
prrducts of the §, expressible as linear combinations of all the §,, was necessary for the
truth of (7-10). Write this formally as

F(Z ca¢,) =Y fa()éa foranyc= {cclall a}. (7—11)

The Galerkir modes form an algebre in this sense. For the linear operator A we write

AZ cgdp = Z(aaﬂcﬂ)éa , (7-12)
B

a8

which introduces the mairiz elements aqg of A. Then when we put (7-10), (7-11), and
(7-12) into (7-6) and equate coefficierts of the linearly independent @, to zero, we get the
equations of the infinite-dimensional nonlinear flow

Ca = zaaﬁc,; L folc), ala, (7-13)
B

that is, an infinite set of coupied ronlinear first order ode’s in time for the (¢} Eq.
(7-13) is-exact, and equivalent to the pde system (7-6) in principle.

The idea of the Galerkin m.thod is to aprroximate the solution (7-10) by using a Snite
set of the most important modes, say ¢y, ¢2, - - - §ar after renumberirg the labels a. One
writes ®(z.1) ~ Zf_’_l ci(t)$i(t) and gets an approximate closed set of M ode’s by keeping
only M of the equations (7-13) and dropping all the ¢, 2 > M, 'in those equations:

M
&= aijej+ fi(c'),

-t

fe,.ca--rey} i=1,2,3,--- M. (7-14)

Choosing the “most important modz»” is of course an art. See further remarks below.
Technically, one truncetes the infinite set (7-13) by projecting it onto tne finite-dimensional
subspace Hy C H spanned by ¢y, ¢2, -+~ das. In particular, fi(c") comes from fi(c) by

setting to zero all ¢;, i > M. This prescription is all right if the fo(e) admlt power scries
cxpansions in the cg.
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One method of choosing a Galeskin basis of 7 has some advantaga We usé the normal
modes gi(z) of the linearized problem & = A®, with the same b.c.’s £{®) = 0. Look for
solations ®(z,t) = e*'g(z). Then, cancelling c"' we get -

Ag = Ag ,£(g)=10. : (7-15)

Let gi(z), >«(2), i =1,2,3,--- be the set of eigenfunctions and eigenvalues of A. Usually
the set {g:} spans H; if generalized eigenfunctions of A exist (see appendix A), théy miist
be adjoincd fo {g;} in order to span H. Assuming that the proper cigenfunctions do span
H, we can use them instead of the general Galerkin basis iised above. The flows (7-13)
and (7-14) simpiify because the matrix («;;)-is diagonal. The approximate flow then reads

=i+ fi(dy,1=1,2,---M. (7=16)

7.5 Rayleigh Problem by the Galerkin Method

Let us come back to the specific system (7-5). We can put it into standard form (7-6) by
dividi.:g (7-5b) by the number P and “dividing” (7-52) by the operator A,. The laiter is
all zight if A, has an inverse A;? on the space spanned by (7-9); and this is in fact so,
since

Azénk = —'(n27"2 + k2)¢nk E ""Ynkénk ’ (7 - 17)

and 7,x 1s always positive.. So we rewrite

= A+ RAPT, + A7 ————a(v’A'"‘b)

p a(z,z) ’ (7~ 18q)

-1 1 1 3(1,[),T) ,
T= PA2T+ Plbz 7 a(z, x) {7 - 18b)
¢=¢zz=T=Oatz=0,1(allxandallt). (7—18¢)

The normal modes are (GZ 1976)
P k=1¢E sinnrz sinkz
Gk = (Tffk) [ bfk sinnwz coskx |’ (7= 194)
P+1 P-1\? RE? 13
+* _ _ 2

Ank_ 2p ')'nki [( P ) 7nk+P’)’"k] ’ (7-191))
0, = PNEP + i) 0F, | yar = nP0® 4 12 (7~ 19¢)

(Please note: we write time-dependence e of normal modes, GZ write ¢™*.  So our
cigenvalues (7-19b) are the ncgatlves of GZ’s, and we have changcd some other notation

accordingly.) The complcte label ¢ is (£,n L) with n =1,2,3,--- and 0 < k < 0. The
parameter g is the pair R, P.
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Local bifurcation values are determined by A}, = 0 for each n and k. All A7, < 0.
Then the mode (+,n, k) changes from decaying (A < 0) to growing (A > 0) as A increases
through zero. (Note all \’s are real.) See Fig. 7.1.

Fig. 7.1 Showing the eigenvalues A%, for k = 2 and n = 1,2,3 as functions of R. Top:

k
P =3, middle: P =1, bottom: P = ,%-
These crilical Rayleigh numbers come out to be

Rar =k24%; , (7—20)

from (7-19b), independent of P. So R,i increases monotonically in n for any k. The
smallest critical Rayleigh number = R; = (27/4)x* (at n =1 and k = 7//?2). R, is thus
the threshold for convection; for R < Ry = 657.5 there is only the quiescent solution (7-2).

The wave number £ in the z-direction can be fixed by various experimental techniques, for
example, by the aspect ratio of the cell approximating the infinite plane horizontal layer
of the theory (sce Chap. 8). We consider it fixed hereafter. Then if Ry < R < Riug ks
there will be a complicated convection with m growing modes and the rest, decaying modes.
Thus it would seem reasonable to try to approximate the nonlincar motion in this regime
by a Galerkin approximation including these m modecs plus possibly a few others. (The

flow is, after all, nonlinear, so we cannot rule out the influcnce of decaying modes, even as
t— 00.)

Let us fix & and assume Ry; < R < Ror. Then the unstable subspace E* will be 1D
only, spanned by g1 = g7, since A}, > 0. All other modes are decaying, € E°. If we
want a physically good Galerkin approximation with M > 1 modes, how do we choose the
further modes? There is currently no clear, agreed-upon algorithm for this choice. The
pioncering work of Lorenz (1963) and succeeding work have provided some hints. For
example, g; = g should certainly be included. W lerstand this 1 i :
a » 92 = g5p should certainly be included. We can understand this by noting that
the nonlinear terms in (7-18) generate this mode from g3 in the sense of (7-11). Namely,
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if F acts on the single mode g3, it produces the mode g20 This idea caii be misde iiito
a precise algonthm for genérating a sequence of iinproving Galerkiii approxiihations (see
Ingraham, 1990).

So how, as a simple inodel Galerkin approximation, take
3(z,1) = aon(2) + a(t)ga() -3

where z € R? stands for (z,2). From (7-19) the rorinal modes are

k~la; sinmz sinkz 0 ;
91-——( .1 . )s g2=(s- ~)1 (7"":-'2)

sinwz coskz in2rz

where we took b1 = b}, =1andset a; = al determined by (7-19(,), while a = = af,
does not occur, see gs. Put this into the pde s (7-18) and truncate at tiie two modes kept,
as described above. The imain wotk cormes in computing the coefficients fi(c') ini (1-16)
Becaiise of the simple form of the fiorinal modes for the Rayleigh problemi, (7-11) is triie;
and this algebra is in fact finite: F acting on a finite sum Y, caPa produces only a finite
su Y, fa¢a- This is traced to the simple tiigonometric identities

sinld sinmf = %[cds(l —m)f — cos(l + m)6} ,

coslf cosmb = %[cos(l —m)8 + cos({ + m)f)] , (7-23)

sinlf cosmé = %[sin(l —m)f + sin(l + m)é].

In our problem, with normal modes (7-22), we encounter only the cross products

. 1,. .
sinwz cos2wrz = §(sm 37z —sinnz),

sinmz coswz = % sin27.- , (7—24)

as cafi be verified. Since we keep only the two modes g1 and g2, the sin3wz will not
contribute at all. Eventually we arrive at the flow (7-16) for M = 2. By solving it
numerically we can get some idea of the actual flow near R;;.

Prob. 7.1 Carry through the Galerkin approximation (7-21). For the flow (7-16)
you should find

waas . ) o
c1Cy , C2 = Aoaca —

=) e .-
() 1CI+P(G3—CL1) 5P c

(7~ 25)

where a; = afy, a3 = aj, determined by (7-19¢c) with b, = b, = 1and A = A, >0,
Ay <.
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Prob. 7.2 Carry through the three-normal mode approximation

&(z,t) = c1(t)g1(z) + c2(t)gz(z) + c3(t)gs(<)

with g3 = g, and g3, g2 as before.

This latter flow in ®3 is equivalent to the 3-Galerkin mode approximation of Lorenz (1963)
for k = n/+/2, as can be verified.

7.6 Cautionary Remarks

The short survey of the general Galerkin method in section 7.4 is deceptively simple. The
real work is concealed in the equations (7-6) and (7-12). The reduction to normal form (7-
6) depends on which fields one wants to isolate; the others are eliminated at the expense
of raising the differential order. For example, (7-5a) is fourth order, while the original
equations are only second order. When 3D motion is considered, the representation

V=Vl +Veer =V X (VX)) +Vxrw, (7—26)

which satisfies the incompressible constraint V - v = 0 identically, is often used. This
already increases the differential order by two, and further manipulation to separate the
cquations for the poloidal and toroidal stream functions ¥ and w as much as possible
increases it still further. ,

As to (7-12), it takes considerable stamina to do the algebra which results in the explicit
cocflicients fo(c) when M is not small. Further, this algebra need not be finite: finite
number of terms on the right of (7-11) when a finite linear combination of modes is the
input on the left. This infinite sum may also involve integrals. This, unfortunately, is
the case usually encountered — the Rayleigh problem has an unusual simplicity because
of the simple, finite closure properties of trigonometric functions under multiplication. In
fact, the Galerkin method with m growing modes is only practicable when the nonlinear
operator F' generates a few further modes with nonnegligible coefficients fo(c). It is hard to
say a priori which pde-systems and b.c.’s guarantee this criterion. But the reader should
not forget that we are confronting real nonlinear motion laws head on by the Galerkin
method. Neat, simple solutions cannot be expected.

Working out probs. 7.1 and 7.2 will give the serious reader an understanding of the general
Galerkin method. There is no substitute for the actual labor of applying the nonlinear
operator to a sum of normal modes, producing a general Galerkin vector, then reéxpressing
this as a sum of normal modes.

7.7 Patterns of Convection
We look at the pattern of convection for our simple Rayleigh problem. By (7-4)

vz=§bz,vz=—¢'z- (7—27)
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Sirice we have 2D motion with no y-dependence, the convectioni faust be in the form of
“y-rolls,” with axes parallel to the y-axis. For a single mode we get

v  sinnwz coskz ,v; o =k Inx cosnxz sinkz (7-28)
from (7-19a). The velocity nodes (v = 0) are at the lattice points.
(kz;n#z) = (p7/2, g 7/2) ; p,q integers, both everi or both odd. (7-29)
Further, the stability of these velocity fixed points is
P,q both odd = center; p,qbotheven = saddle point. (7-30)
This is most easily seen by drawing velocity vectors along the points of the horizontal and
vertical lines through lattice points (7-29), using (7-28). The streamlines of these rolls fill

otit thie squares, they are not citcles atound the centers. The boundaries of the squares
are streamlines, the separatrices of tlie saddle points. See Fig. 7.2.
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Fig. 7.2 Convection roll fluid flow patterns
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8. EXPERIMENTAL REALIZATIONS OF NONLINEAR DYNAMICS
8.1 Introduction

So far we have seen several theoretical “paths to chaos.” There is the period-doubling route
2"-cycles — “chaos” as n — oo in 1D maps, caused by increasing the parameter. Then
there is the route n-tori — KAM tori plus stochastic layers (“chaos”) from the break-up of
resonance zones in Hamiltonian dynamics. This is caused by increasing the strength of a
nonintegrable perturbation to an integrable Hamiltonian. Then there is the intermittency
route: periodic motion interrupted by bursts of “chaotic” behavior, which approaches a
fully “chaotic” regime as some parameter is varied. All of these routes have been seen
experimentally. We describe a few of these experiments briefly in this chapter.

We shall discuss pde systems in the rest of this section, focusing on incompressible viscous
fluid flow. To see the various stable regimes, the bifurcations connecting them, the
associated universal numbers, etc., it is usually sufficient to measure any of the physical
fields, say vz, vy, vz, or T, at a fixed point in space as a function of time.

This brings up the question: what is the connection of the actual fluid velocity and
temperature distributions in 3D configuration space and the mathematical image of it, the
M functions of time ¢;(t), c2(t), - -- em(t) which we study in a Galerkin approximation?
This is determined of course by the expansion ’

B(z,1) = 3 eit)oi(t) (8~1)

1

of the fields in normal modes g;. From that we can understand the following correspon-
dences.

a. A stable fixed point ¢} of the flow
éi = hici + fi(c) (8-2)

¢t =0, all 7, corresponds to a stable stationary fluid motion (and temperature distribution
understood hereafter), typically convection rolls.

b. If the flow (8-2) shows a stable periodic orbit (limit cycle) ¢;(t + T') = ci(¢), all
t, then the fluid motion becomes periodic with period T, a regime called oscillatory. (A
critical Reynolds number R, = vL /v governs the onset of oscillatory motion. Here v =
characteristic velocity, and L and v were defined in chap. 7.) Period-doubling in the flow
at a bifurcation value of the Rayleigh number leads to a bifurcation in the fluid motion to
an oscillatory motion of period 2T. If, finally, the flow enters a “chaotic” regime, say it is
chaotic in the precise sense of definition (5-5), the fluid motion is correspondingly chaotic.
One could in principle measure the sensitive dependence of the fluid quantities, say T(r, 1),
by varying the pde initial conditions slightly.

c.  On fixing the wave number k by experimental techniques, the following is
presumably the basic idea. Experiments use small rectangular parallelopipedal cells to
approximate the infinile horizontal layer of theory (section 7.3). Sec Fig. 8.1.
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Fig. 8.1 Experimental “rectangular” cell of height L and z-width L

First, L, >> L, is desirable. Second, if an integral number [ of identical convection rolls
form, one has kL, = Ir (see Fig. 7.2), which fixes k.

8.2 Some Specific Experiments

8.2.1 Pde Systems

a. Libchaber and Maurer (1982). Liquid *He in a small cell, whose top and bottom
were highly conducting plates. Two bolometers imbedded in the upper plate give local
temperature readings. The cell dimension “favored” two or three convection rolls. The
Prandtl number was small, 0 < P < 1. Temperatures were in the range 2.5-4.5K. The
temperature difference ATy = AL (cf. (7-2)) was only the order of mK for the onset of
.convection.

As the Rayleigh number was increased above the regime of stable stationary convection,
they saw: first, oscillatory motion of a frequency v, (which increased linearly with R),
then the appearance of a second, incommensurable frequency v, then frequency locking
vy — v1/2, then a cascade of subharmonics (period-doubling) v /2, v1 /4, v1/8, v,/16, ---
resolved up to vy /16. These are all obtained from the signal Tj (¢) of one of the bolometers.
Other regimes were also seen, which we skip here.

Frequency locking is a phenomenon in nonlinear oscillators whereby for two close enough

frequencies vy, v4 of the motion v, suddenly jumps to a subharmonic of v;. The reader is
referred to Bak (1986).

Let R, be the period-doubling bifurcation values of the Rayleigh number. It was found
that

§= lim —“——"=L ~ 35 (8-3)




to the obsérved resolution. Cf. § = 4.6692- - for the corresponding logistic map ratio.

b. Libchaber, Laroche, and Fauve (1982). Liquid mercury in a small cell with top
and bottom plates of copper. A single bolometer was imbedded in the bottom plate.
The aspect ratio of the cell “favored” four convection rolls. The rolls were stabilized
by a uniform magnetic field parallel to their axes. (We remark that this goes beyond the
system (7-1) into MHD, or magnetohydrodynamics. MHD is the proper dynamics for some
extremely important and interesting areas, for example, plasma physics, stellar interiors,
the geodynamo (source of the Earth’s magnetic field).)

As the Rayleigh number was raised beyond the regime of stable convection rolls, oscillatory
motion set in. Then a subharmonic cascade vq, v1/2, v1/4, v1/8, v1/16 was seen in the
reading T'(t) of the bolometer. See Fig. 8.2 for the time series T(t) and its power spectrum.
The number § = (8-3) was observed to be & 4.4, nearer the universal valuc of the logistic

map.
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Fig. 8.2a Time series T(t) of the temperature for various Rayleigh numbers R. R, is our

R, = absolute minimum of the R,k (see chap. T7) (From Libchaber, Laroche, and Fauve
(1982), with permission)

For the theory of the complicated set of stable regimes and their bifurcations, sce Busse
(1978). For the experiments summarized in this chapter, sce Cvitanovié (1984, part 2).
From now on our descriptions will be briefer.

¢. Gollub and Swinney (1975). They measured a fluid velocity component at a fixed

point in a rotating fluid. The system is an incompressible viscous fluid, but is not exactly
that of the convective system (7-1).
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Fig. 8.2b Power spectrum of T(t). Arrows indicate the peak at v;. (From Libchaber,
Laroche, and Fauve (1982), with permission)

d. Bergé et al. (1988). They measured v, locally and an averaged VT in silicone
oil, where the Prandt] number P is large, P ~ 130, They found evidence of intermittency,
(section 3.10.3)

8.2.2 Other Systems

e. Hudson and Mankin (1981). A chemical system, the Belousov-Zhabotinskii
reaction. They measured thie concentration of one chemical species by an indirect method.

The system here is an actual finite-dimensional flow, cf. the simple Brusselator model of
section 2.7.1.

f. Arecchi et al. (1982). A quantum optical system, a periodically perturbed CO,
laser. Mathematically, the system is a nonautonomous flow in $2 (thus an autonomous
system in one higher dimension).

g Testa et al. (1982). An electronic system, a driven nonlinear oscillator. This
is a nonautonomous flow in 2.  Electronic systems with their precise controls and
measurements, allow the cleanest tests of the theory.

h. Guevara, Glass, and Shrier (1981). Living matter system (1), cardiac cells perturbed
by electrical current pulses.
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APPENDIX A
GENERAL LINEAR STABILITY ANALYSIS

We consider the linear flow & = Az, ¢ € RV, A = real N X N matrix. In the general
casc the N proper eigenvectors e; of A, see (2-4), are not linearly independent (= do not
span ®V). A simple example in %2 is (§ 1). The double cigenvalue A = 1 has only one

linearly independent eigenvector ((1)) However, in any case we can introduce the generalized

eigenvectors, which do span RN. The vector f is called a generalized eigenvector of A to
eigenvalue X if
(A= A1) f =0 for some integerp, 1 <p < N. (4-1)

For p = 1, f reduces to an ordinary, or proper, eigenvector.

Let fi, i = 1,2,--+ N, be the linearly independent generalized cigenvectors. For matrix
A = (a;j), say they have components f;;, that is, f; is the jth component of vector fi.
Then A can be put into Jordan canonical form by the similarity transformation T-1AT,
by using the matrix T' whose ¢jth matrix element is Tj; = fi;. That is, the vector f; forms
the 7th column of the matrix T\ If the f; are properly ordered, A takes Jordan canonical
form, namely A is in block form

B, O
B,
A= . (A-2)
O B,
with submatrices By along the diagonal, where each By has the form
A 1 O]
A1l
B = e, T, . (A-3)
A1
L0 A

That is, a single eigenvalue A on the main diagonal, 1’s along the main superdiagonal, and
zeros elsewhere. The reader can easily check that this includes the case of A diagonalizable.
Then the By are all 1 x 1, simply the eigenvalues A\ of A. It is also clear that if all the N
eigenvalues A; are different, A must be diagonalizable.

To test your understanding of this, try to do the following exercises.
Ex. A.l

a. Given a generalized eigenvector f, let p be the minimal exponent for which

(A-1) holds. Prove that the vectors f, (4 — A1)f, (A — A1)2f, (A — A1)?~! f are linearly.
independent.

b. If p = N in part (a), we have N linearly independent vectors e; = (4 — A1) f,
t=0,1,2,.--- N — 1. Show that in this case, if the e; are taken as basis elements, A has
the form (A-4) of a single Jordan block. (Hint: remember the relation

N
Ae; =Zaj,-ej ,t=12,---N
i=1
defining the matrix elements of aj; of a linear operator A.)
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APPENDIX B -
PROOF OF NO SD IN THE QUANTUM-MECHANICAL SELF-CORRELATION

This map of the state vector is defined
C(t,7)= (Y)Y + 7)), t = time, 7 a const. (B-1)

This is a complex number; the corresponding metric d is the absolute value of the difference.
Thus, given |9’ — || < § small, we want to prove

AC = (W' @'t + 7)) = (B + 7)) (B-2)

always small, where ¥(0) = 9, ¥'(0) = ¢', and both are normalized.
Now %(t) = U(t,0) ¥(0), ¥(t + 7) = U(t + 7,0) 4(0), and similarly for 4'(¢) and ¢'(t + 1),

where U is the unitary time-evolution operator. Here we place no restriction on the QM
system : H has any dimension, including oco; the energy operator is any whatsoever, and
may depend explicitly on £, We can thus rewrite

@O +7)) = (10 I (B -3)
where U(t,7) = U™1(t) U (t + 7), and the same for 3.

Now we need a convenient representation for any ' close to 9, such that ||’ — || = 6,
say, 0 < §; < 6. This is

P = N-1(¢ + 61x), where "X" =1, (;\'l"/)) =0,

NE(1+53)%» (3_4)

as the rcader can verify. We repeat: any state ¢’ in the §-neighborhood ||¢)' — 9| < & can
be represented as in (B-4) for some unit state ¥ normal to 1 and some §; < §.

Put (B-4) into (B-3). We get

(W01 = N2 [(«mmw 4 82(x[C) + 26 Re(xT[)] . (B-5)

This is then substituted into AC, equation (B-2). Now we use some elementary inequalities
on complex numbers and the Schwarz inequality in QM:

(alb)

< llell - el (B -6)
where (ab) is the scalar product of two vectors in M and |ja||? = (ala), ctc. We get

AC = (N2 = 1)([0[$) + N =28} (x|lx) + 2N =26, Re{x|T})
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<(-— :\*"‘)E(e&tﬁﬁv:v)! 41 "2Sfi(xiﬁux)

+2N24, i(xlﬁﬁz{ﬁ)! <1-N2

6,(3 =
+XN728 £ 2N 776, = :é:—l(—_—'?é}l < 28(1 + &) ,all £ {anrd all 7). (B-1)
+8

Here the Schwarz inequality gave [{(x{Uh?)] < fxfl- [l =1-1 =1 since x| = [lefl = 1
and the unitary U does nof change the norm. Similarly for the other terms.

Now the formal proof that C(¢,7) is Lyapunov stable at any inifial state 75, thus has no
SD (5-2), is obvious, but let us carry it through o ihe end for dlarity. Refer to Def. {3-6).
Given an € > 0. Then for [l — 3]l < &(€), where we take &(e) to satisfy

W(iE+8)<e, (B-38)

we have AC < 26(1 +68) < e 21l t, Q.E.D.
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GLOSSARY OF PRINCIPAL TERMS

The terms marked with * are defined for both fows (confinvous fime systems) and map
dynamies (discreie time systems). In this glossary, only the definifions for fiows are given.
The emendaiions needed o make the definitions apply to discrcie fime systems can be
found by coasulfing Chapter 3, cspecially sections 3.2 - 3.8.

algorithmic complexity (AC) - Tke algorithmic complexity K(sx) of the fiaite word
sy is the lenzth (number of symbols) of the shortest algorithm which will print the word.

analytic function - A real-valued function f of real variables z € RY is analviic in a
neighborkood ¥ C RN if f(z) admits a power series expansion in T about every point
o€ V.

asymptotically stable” - The fixed point z* is asvmpiotically stable if it is stable and
for every ncighborhood ¥V C U of z* a neighborkood 1§ C V of z* exists such that
4(x0) — ™.t — o0, for eversy zp € V5.

attracting set - A closed and invariant set A is called an attracting set i 3 a neighborhood
¥ of A such that é,{(z) € V fort > 0and g,(z) — A, # — +oc, forall. = »". This definition
can be strengthened by requiring some extra properties such as indecomposability (A
contains a dense orbit), generalized dimension in some range, “chaotic” flow, c.c., and
then such sets are called attractors or strange attractors.

attractor -- sce attracting set.

autonomous flow - If the defining equations of a flow £ = f(2,t) = f(z) do not depend
explicitly on £, the flow is said to be autonomous.

bifurcation® - The sudden qualitative change in a flow caused by an arbitrarily small
change in its velocity field f(z), that is, such that the flows before and after the bifurcation
cannot be ¢ontinuously deformed into each other. More precisely, the parameter value p;
of the flow r = f,(z) is called a bifurcation value if the flow is not structurally stable
at g = pp. This means that there exist arbitrarily small perturbations §; f(z), 82f(z) of

fuy(x) such that the perturbed flow £ = f,,(z) + 61 f(z) is not to; logically equivalent to
the perturbed flow & = f,, (z) + 62 f(2).

cascade - See map dynamics.
center* - A fixed point z* is a « r if it is stable but not asyiaj '« tically stable.

center subspace (E€)* - A cen.cr subspace is the subspace of :.ie phase space for a
lincar autonomous flow & = Az (where A is a real N x N matrix, which is spanned by
the subset {w;, w2, - - wn, }Jof eigenvectors of A such that Re); = 0.

dissipative system - An autonomous flow & = f(z) in RV is called .issipativeif V- f =
Zf__l 'g;Li' < 0 there. Since f(z) is the velocity field of the flow in phase space, this negative
divergence implies that comoving volume elements are shrinking in time. Hence a nonzero

volume of RV asymptotically shrinks to volume 0 under the flow.

finite word - A finite word sy is a string of NV letters from some alphabet £, for example
L ={1,2,---m}. A special case is £ = {0,1}, the binary alphabet.
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fixed point (z*}* - A fixed point z* of a flow T = f(z) is defined by #* = f(z*) =0.

flow —~ A sysicmn of N first order ordinary differential equations in fime 1,

defines a fiow.

Hamilton-Jacobi (H-J) equation ~ The Hamilton-Jacobi equation is ihe single partial
differeniial equation
H(g,0%W/0q) = E = const.,

for Hamilton’s characteristic function 1.

Hamiltonian system - The flow
¢=0H[0p, p=-0H[dg, ¢.peR’,

in R¥, N = 2n, is a Hamiltonian system of n degrees of freedom. H = H(g,p,t) is
called the Hamiltorian. If H does not explicitly depend on ¢, the flow is autonomous, and
H(q(2),p(t)) is a constant (or integral) of the motion. In other words, H is conserved.

homeomorphism~ A homeomorphism & : U — V maps open set U into open set ¥ such
that k is continuous and A~? exists and is continuous.

hyperbolic* - A fixed point z* is called hyperbolic (sometimes nondegenerate) if D f{z*)
has no eigenvalue A with ReX = 0, where D f(z*} is the Jacobian matrix evaluated at the
fixed point. That is, if E°¢ = 0, the zero vector.

integrable Hamiltonian system - There are three ways to define an integrable Hamil-
tonian system:

1) A Hamiltonian system is integrable if the solution curves ¢(zg)
= (g9(qo0, Po,t), (g0, Po, 1)) are analytic in z9 = (go,po) and in &.

2) A Hamiltonian system is integrable if there exist n independent analytic constants
of the motion Fi(¢(t),p(¢)) = const., i =1,2,---n.

3)A Hamiltonian system is integrable if its Hamilton-Jacobi equation admits a com-
plete solution.

invariant set — Set S is invariant if ¢,(S) C S, —00 < £ < c0.

local bifurcation® ~ A local bifurcation at the fixed point z* of the flow f,(z) occurs
when an cigenvalue A of the Jacobian matrix Df,(z*) crosscs the imaginary axis in the

complex eigenvalue plane. If ReA(u3) = 0 and this zero is isolated, y; is called a local
bifurcation value.

manifold - A manifold is a “continuous” set like a curve, surface, volume, ctc., or
technically: locally just like ®Y for some positive integer M.
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map dynamics - Let F be 2 map from ®Y into R which is contimuous with continuous

. P G - . - - -
first derivatives, wriiten F: RY — RN, F € C'. F dctennines a dynamics in which iime
is discrecs by iteration, namely

Tpsy = F(zz) . n= integer
A map dynamics is also called a cascade.

phase space” ~ The space of all states of a system. For a flow in RY, phase space is ®Y
or that subset U C R in which the flow is confined.

saddle point* ~ A hyperbolic fixed point z* is called a saddle point if the stable subspace
E* and the unstable subspace E* of the phase space are both # 0, the zero vector.

sensitive dependence (SD) on initial conditions — The dynamics D with orbit
function ¢; and metric d(z',z) has sensitive dependence on initial conditions at state
z if there exists an € > 0 such that, for any neighborhood /\ of z there exists an =’ € A
and a £ > 0 such that d(J,(z'), 6«(z)) > €.

sink* — A fixed point z* is called a sink if it is asymptotically stable.

source® - A hyperbolic fixed point z* is called a source if the stable subspace E* of the
phase space = 0, the zcro vector.

stable fixed point* — A fixed point z* is stable in U if for cvery ncighborhood V C U
of z* there is a neighborhood V; C V of z* such that every solution z(f) = ¢(zo) with
z9 € V; is defined and € V for all £ > 0.

stable manifold* (1¥*) - The stable manifold ¥? of a hyperbolic fixed point z* is the
sct of all those points which converge to z* under the flow. That is, all z € phase space
such that ¢((2) — z*, 1 — +o0.

stable subspace*E*® - A stable subspace E*® is the subspace of the phase space for a
inear autonomous flow £ = Az (where 4 is a real N x N matrix), which is spanned by
the subset {v;,v2,---vn, } of eigenvectors of A such that Rel; < 0.

strange attractor - see attracting set.

structurally stable - sce bifurcation value.

topologically equivalent* - The f-flow and the g-flow in scts X and Y respectively are
topologically equivalent if and only if there exists a hemeomorphismn & : X — Y such that
for cvery t;, ho q&{‘ = @7, o h for some t,.

topologically transitive - For a dynamics D with orbit function ¢, V' is topologically
transitive if, for any pair of open sets Uy, Uz C V, the image of U; under the dynamics
intersects U, at some time: ¢,(U;) N Uz # Ofor some time ¢ > 0.

unstable fixed point* - The fixed point z* is unstable in U if it is not stable, that is,
if 3 a neighborhood V' C U of z* such that for all neighborhoods V; C V of z* 3 an orbit
based at zq € V; which ¢ V for some ¢ > 0.

unstable manifold* (1V'*) - The unstable manifold W* of z* is the set of all those points

which “diverge from z* under the flow” or, more precisely, all those points which converge
to z* as time runs backwards: ¢;(x) — z*, t — —oo0.

unstable subspace*E" - An unstable subspace E™ is the subspace of the phase space
for a lincar autonomous flow & = Az (where A is a rcal N x N matrix), which is spanned
by the subset {uy,uy,---upn,} of eigenvectors of A such that Rel, > 0.
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